

Problem 1 Suppose that a realisation of a Poisson process \mathcal{P} on \mathcal{E} with intensity function $\dot{\mu}(x)$ has been observed and its points are independently coloured red with probability $\gamma(x)$ or green with probability $1 - \gamma(x)$, where $0 \leq \gamma(x) \leq 1$. This results in processes $\mathcal{P}_1 = \sum_j \delta_{X_j} I_{X_j}$ and $\mathcal{P}_2 = \sum_j \delta_{X_j} (1 - I_{X_j})$, where the I_{X_j} are independent Bernoulli variables with probabilities $\gamma(X_j)$ and δ_x is a unit point mass at x .

Show that the joint Laplace functional for two compactly-supported non-negative continuous functions f_1 and f_2 is

$$E \left\{ \exp \left(- \int f_1 d\mathcal{P}_1 - \int f_2 d\mathcal{P}_2 \right) \right\} = \exp \left[- \int_{\mathcal{E}} \left\{ 1 - e^{-f_1(x)} \right\} \gamma(x) \dot{\mu}(x) dx - \int_{\mathcal{E}} \left\{ 1 - e^{-f_2(x)} \right\} \{1 - \gamma(x)\} \dot{\mu}(x) dx \right],$$

and hence deduce that \mathcal{P}_1 and \mathcal{P}_2 are independent Poisson processes. Deduce that thinning a Poisson process by independently erasing events results in another Poisson process.

Hint: first condition on \mathcal{P} and use independence of the $I(x_j)$ at the resulting points $\{x_1, \dots, x_n\}$; then condition on the number of events in a compact set \mathcal{A} containing the support $f_1 + f_2$ and use the argument of Lemma 7.

Problem 2 Let \mathcal{P} be a Poisson process on the compact set $\mathcal{E} \subset \mathbb{R}^d$ with mean measure μ and intensity $\dot{\mu}$. Consider a mapping $g : \mathbb{R}^d \rightarrow \mathbb{R}^s$ that neglects coordinates of x , e.g., $g(x_1, \dots, x_d) = (x_1, \dots, x_s)$, for $s < d$.

- (a) Show that $g(\mathcal{P})$ is a Poisson process and find its mean measure.
- (b) Is a homogeneous Poisson process \mathcal{P} on $\mathcal{E}' = \mathbb{R}_+$ also a Poisson process on $\mathcal{E} = \mathbb{R}^2$? Does the mapping theorem apply? If not, which condition fails?
- (c) Let \mathcal{P} consist of points $\{(T_j, X_j)\}$ on $\mathcal{X} = [0, 1] \times (0, \infty)$ and that $\mu\{[t_1, t_2] \times [x, \infty)\} = (t_2 - t_1)(1 + \xi x)_+^{-1/\xi}$, for $0 \leq t_1 < t_2 \leq 1$ and $x > 0$. Are the processes $\{T_j\}$ and $\{X_j\}$ Poisson?

Problem 3 Alice, Bob and Carol don't know much about statistics, but want to estimate the rate λ of a homogeneous Poisson process that started a long time ago and which they begin to watch at time t' . Alice decides to record the length W_A of the interval after the first event following t' . Bob decides to record the time W_B from t' to the next event. Carol decides to record the length of the interval W_C surrounding t' (i.e., she waits to the next event, but also checks when the last event before t' occurred).

- (a) Show that $E(W_A) = E(W_B)$ and these allow $1/\lambda$ to be estimated, but that $1/W_A$ and $1/W_B$ are poor estimators of λ .
- (b) Show that the waiting time T_n to the n th event in a homogeneous Poisson process satisfies $T_n > t$ iff $P\{N(t) \leq n - 1\}$, and deduce that

$$f_{T_n}(t) = \frac{\lambda^n t^{n-1}}{n!} e^{-\lambda t}, \quad t > 0.$$

- (c) Show that $E(W_C) = 2/\lambda$, but that $1/W_C$ is an unbiased estimator of λ .

Problem 4 Consider a homogeneous Poisson process of rate λ in \mathbb{R}^D .

- (a) Show that the void probability of a ball $B_r(x)$ of radius r around an event at x is $\exp\{-\lambda|B_r(x)|\}$, where $|\cdot|$ denotes volume, and hence find the density function of the distance to the event nearest to x . Would this be the same if there was no event at x ?
- (b) Ripley's K -function is defined as

$$K(r) = \lambda^{-1} E(\#\{\text{number of events within distance } r \text{ of an arbitrary event}\}), \quad r > 0.$$

Find this function when $D = 2$, and explain why it might be preferable to plot $L(r) = \{K(r)/\pi\}^{1/2}$.

(c) The following code obtains and plots some data on the positions of $n = 138$ caveolae in a 500×500 unit square of muscle fibre, and then computes the estimate of $L(r)$. In practice it is important to allow for edge effects, but although the estimate is modified to do so, we do not discuss this here.

```
library(boot)
library(spatial)
data(cav)
par(pty="s",mfrow=c(2,2)) # square panels for plots
plot(cav,pch=16)
ppregion(xl=0,xu=500,yl=0,yu=500)
plot(Kfn(cav, fs=100), type="s", xlab="Distance", ylab="L(r)",
      panel.first=abline(0,1,col="grey"))
```

Do you think that the data could be a realisation of a Poisson process? Explain your reasoning.

To compare the data with simulations from a homogeneous binomial process with n events, we use

```
sim <- cav
sim$x <- 500*runif(138)
sim$y <- 500*runif(138)
plot(sim,pch=16)
plot(Kfn(sim, fs=100), type="s", xlab="Distance", ylab="L(r)",
      panel.first=abline(0,1,col="grey"))
```

Explain why this generates from the stated process. Does the simulated L -function shed light on the data? Compute the K -functions for some more sets of simulated data, then briefly summarise your conclusions.