

Problem 1 We wish to simulate from a Poisson process on $[0, t_0]$ whose rate function $\dot{\mu}(t)$ is bounded above by a finite M , using a source of uniform variables $U_1, U_2, \dots \stackrel{\text{iid}}{\sim} U(0, 1)$. Below U denotes a new $U(0, 1)$ variable each time it appears. We use the following algorithm:

1. first generate $N \sim \text{Poiss}(Mt_0)$. Suppose that $N = n$;
2. then generate $U_1, \dots, U_n \stackrel{\text{iid}}{\sim} U(0, 1)$ and set $T_1 = t_0 U_1, \dots, T_n = t_0 U_n$;
3. then generate $U_1^*, \dots, U_n^* \stackrel{\text{iid}}{\sim} U(0, 1)$ and retain T_j only if $MU_j^* \leq \dot{\mu}(T_j)$;
4. return the retained values of T_1, \dots, T_n .

(a) Show that if $U \sim U(0, 1)$, $a \in \mathbb{R}$ and $b > 0$, then $a + bU \sim U(a, a + b)$. Hence give the distributions of the T_j and of the MU_j^* .

(b) At the rejection step 3, show that the probability that T_j is retained is $\int_0^{t_0} \dot{\mu}(t) dt / (Mt_0) = \mu(t_0) / (Mt_0)$, and deduce that the probability that $T_j = t$, conditional on it being retained, is $\dot{\mu}(t) / \mu(t_0)$. Use the independence of the T_j to explain why the algorithm achieves its purpose.

(c) The efficiency of such an algorithm can be defined as the ratio of the expected number of T_j s output to the expected number of U s used. Show that this equals $\mu(t_0) / (2Mt_0)$, and deduce that it is optimal to take $M = \sup_{0 \leq t \leq t_0} \dot{\mu}(t)$. Can you think of a way to improve on this algorithm?

Problem 2 The events t_1, \dots, t_n of a Poisson process on $(0, t_0]$ are available, and it is supposed that the intensity function is of the form $\dot{\mu}(t) = \exp\{\sum_{r=1}^p \beta_r b_r(t)\}$, where the functions $b_r(t)$ are basis functions defined on $[0, t_0]$ (e.g., polynomials, $b_r(t) = t^{r-1}$).

(a) Show that the corresponding log likelihood can be written in the form

$$\ell(\beta) = \sum_{r=1}^p \beta_r s_r - k(\beta), \quad \beta = (\beta_1, \dots, \beta_p) \in \mathbb{R}^p,$$

and give formulae for s_r and $k(\beta)$. Do you recognise this? What are the implications?

(b) The calculation of $k(\beta)$ may be painful. Suppose instead that $[0, t_0]$ is divided into K disjoint intervals of lengths $\Delta = t_0/K$, and let y_1, \dots, y_K be the numbers of events in the successive intervals. Explain why approximate inference on β can be based on the log likelihood

$$\ell_K(\beta) = \sum_{k=1}^K (y_k \log \mu_k - \mu_k),$$

where $\mu_k = \Delta \dot{\mu}\{(k-1/2)\Delta\} = \Delta \exp\{\sum_{r=1}^p \beta_r b_r((k-1/2)\Delta)\}$. In what sense is this approximate? Is this model also an exponential family?

(c) If $\dot{\mu}(t)$ is bounded and continuous, show that $\ell_K(\beta) - n \log \Delta \rightarrow \ell(\beta)$ as $K \rightarrow \infty$.

Problem 3 This question uses the ideas from the previous one to fit the model with $\dot{\mu}(t) = \lambda e^{\beta t}$ to the Bengal data. In a *generalized linear model (GLM)* the mean μ of a response variable y with an exponential family distribution (normal, binomial, Poisson, gamma, ...) can depend nonlinearly on a *linear predictor* $x^T \beta$, where x is a vector of known covariates and β is to be estimated. The usual GLM for a Poisson response sets $y \sim \text{Poiss}(\mu)$ and $\log \mu = o + x^T \beta$, with o a known term called an *offset*. The following code fits this model with $\log \mu(t) = \log \Delta + \log \lambda + \beta t$, where $\log \Delta$ is the offset, and $K = 20$ intervals. It uses the histogram function `hist` to obtain the counts in the K intervals and the function `glm` to fit the Poisson model:

```

load("bengal.dat")
K <- 20; t0 <- 101; Delta <- t0/K
breaks <- c(0:K)*Delta
(y <- hist(bengal-1877, breaks=breaks, plot=FALSE)$counts)
t <- Delta*(c(0:(K-1))+0.5)
log.Delta <- rep(1,K)*log(Delta)
summary(glm(y~1+t+offset(log.Delta), family=poisson))

```

Part of the output looks like

Coefficients:

	Estimate	Std. Error	z value	Pr(> z)
(Intercept)	-0.110184	0.188686	-0.584	0.55925 # log lambda from slide 37
t	0.008224	0.002942	2.795	0.00518 ** # beta from slide 37

Null deviance: 42.550 on 19 degrees of freedom

Residual deviance: 34.601 on 18 degrees of freedom # difference is 42.55-34.60=7.95

- (a) Compare the output above with the results on slide 38. Do they agree adequately, in your opinion?
- (b) Try increasing K , and see at what point the results stabilise. Discuss.
- (c) If you have nothing better to do, try fitting some other more complex models, e.g., fitting periodic functions using

```

c <- cos(2*pi*t)
s <- sin(2*pi*t)
summary(glm(y~t+offset(log.Delta)+s+c, family=poisson))

```

and using the residual deviances with and without $s+c$ to test whether the added terms are needed.