
MATH-383: Risk and Environmental Sustainability Anthony Davison/Linda Mhalla

Problem 1 We wish to simulate from a Poisson process on [0, t0] whose rate function µ̇(t) is bounded

above by a finite M , using a source of uniform variables U1, U2, . . .
iid
∼ U(0, 1). Below U denotes a new

U(0, 1) variable each time it appears. We use the following algorithm:

1. first generate N ∼ Poiss(Mt0). Suppose that N = n;

2. then generate U1, . . . , Un
iid
∼ U(0, 1) and set T1 = t0U1, . . . , Tn = t0Un;

3. then generate U∗
1 , . . . , U∗

n
iid
∼ U(0, 1) and retain Tj only if MU∗

j ≤ µ̇(Tj);

4. return the retained values of T1, . . . , Tn.

(a) Show that if U ∼ U(0, 1), a ∈ R and b > 0, then a + bU ∼ U(a, a + b). Hence give the distributions
of the Tj and of the MU∗

j .

(b) At the rejection step 3, show that the probability that Tj is retained is
∫ t0

0
µ̇(t) dt/(Mt0) =

µ(t0)/(Mt0), and deduce that the probability that Tj = t, conditional on it being retained, is
µ̇(t)/µ(t0). Use the independence of the Tj to explain why the algorithm achieves its purpose.

(c) The efficiency of such an algorithm can be defined as the ratio of the expected number of Tjs
output to the expected number of Us used. Show that this equals µ(t0)/(2Mt0), and deduce that
it is optimal to take M = sup0≤t≤t0

µ̇(t). Can you think of a way to improve on this algorithm?

Problem 2 The events t1, . . . , tn of a Poisson process on (0, t0] are available, and it is supposed that the
intensity function is of the form µ̇(t) = exp {

∑p
r=1

βrbr(t)}, where the functions br(t) are basis functions
defined on [0, t0] (e.g., polynomials, br(t) = tr−1).

(a) Show that the corresponding log likelihood can be written in the form

ℓ(β) =
p∑

r=1

βrsr − k(β), β = (β1, . . . , βp) ∈ R
p,

and give formulae for sr and k(β). Do you recognise this? What are the implications?

(b) The calculation of k(β) may be painful. Suppose instead that [0, t0] is divided into K disjoint
intervals of lengths ∆ = t0/K, and let y1, . . . , yK be the numbers of events in the successive
intervals. Explain why approximate inference on β can be based on the log likelihood

ℓK(β) =
K∑

k=1

(yk log µk − µk),

where µk = ∆µ̇{(k −1/2)∆} = ∆ exp {
∑p

r=1
βrbr((k − 1/2)∆)}. In what sense is this approximate?

Is this model also an exponential family?

(c) If µ̇(t) is bounded and continuous, show that ℓK(β) − n log ∆ → ℓ(β) as K → ∞.

Problem 3 This question uses the ideas from the previous one to fit the model with µ̇(t) = λeβt to
the Bengal data. In a generalized linear model (GLM) the mean µ of a response variable y with an
exponential family distribution (normal, binomial, Poisson, gamma, . . . ) can depend nonlinearly on a
linear predictor xTβ, where x is a vector of known covariates and β is to be estimated. The usual GLM
for a Poisson response sets y ∼ Poiss(µ) and log µ = o + xTβ, with o a known term called an offset. The
following code fits this model with log µ(t) = log ∆ + log λ + βt, where log ∆ is the offset, and K = 20
intervals. It uses the histogram function hist to obtain the counts in the K intervals and the function
glm to fit the Poisson model:
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load("bengal.dat")

K <- 20; t0 <- 101; Delta <- t0/K

breaks <- c(0:K)*Delta

(y <- hist(bengal-1877,breaks=breaks,plot=FALSE)$counts)

t <- Delta*(c(0:(K-1))+0.5)

log.Delta <- rep(1,K)*log(Delta)

summary(glm(y~1+t+offset(log.Delta),family=poisson))

Part of the output looks like

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -0.110184 0.188686 -0.584 0.55925 # log lambda from slide 37

t 0.008224 0.002942 2.795 0.00518 ** # beta from slide 37

Null deviance: 42.550 on 19 degrees of freedom

Residual deviance: 34.601 on 18 degrees of freedom # difference is 42.55-34.60=7.95

(a) Compare the output above with the results on slide 38. Do they agree adequately, in your opinion?

(b) Try increasing K, and see at what point the results stabilise. Discuss.

(c) If you have nothing better to do, try fitting some other more complex models, e.g., fitting periodic
functions using

c <- cos(2*pi*t)

s <- sin(2*pi*t)

summary(glm(y~t+offset(log.Delta)+s+c,family=poisson))

and using the residual deviances with and without s+c to test whether the added terms are needed.
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