
Week 1

Problems 1

To run the following exercises, first install and then load the R packages:

```
evd, mev, scales, lubridate, gridExtra, ggplot2, dplyr, tidyr, ggdist, ggpubr  
using library(evd) etc.
```

1. To get some intuition for the information in a probability plot, here is a function to generate samples, standardize them and make a normal probability plot of them:

```
tp <- function(n=c(10,20,50), line=F, ran.gen=rnorm, lims=c(-4,4), ...)  
{ m <- length(n)  
for (i in 1:m) for (j in 1:m)  
{ y <- ran.gen(n[i],...)  
y <- (y-mean(y))/sqrt(var(y))  
qqnorm(y,xlim=lims,ylim=lims,main=paste("n=",n[i]))  
if (line) abline(0,1,lty=2)  
invisible() }
```

- (a) To produce plots for normal samples of sizes 10, 20 and 50:

```
par(mfrow=c(3,3),pty="s")  
tp() # without line  
tp(line=TRUE) # with line
```

Repeat the last two commands a few times. Is the line useful? What effect has sample size on the variability of the plot?

- (b) To assess what happens for non-normal data, here are samples from the gamma distribution with shape parameter 4 and from the *t* distribution with 5 degrees of freedom:

```
tp(ran.gen=rgamma,shape=4,line=TRUE)  
tp(ran.gen=rt,df=5,line=TRUE)
```

Try each several times, with and without lines and with various values of `shape` and `df`.

Write a short summary of your findings.

- (c) The function below generates data that are either (1) normal, (2) heavy-tailed, (3) skewed, (4) light-tailed, (5) have outliers, or (6) rounded.

```
ran.gen <- function(i,n,m=5)  
switch(i,rnorm(n),rt(n,df=m),rgamma(n,shape=m)/m,  
(rbeta(n,m,m)-0.5)*m,c(rnorm(n-m),rcauchy(m)),  
round(m*rnorm(n)))  
par(mfrow=c(3,3),pty="s")  
gen <- sample(x=1:6,size=9,replace=TRUE) # make data type  
for (i in 1:9) qqnorm(ran.gen(gen[i],500)) # make data and plot them
```

Which normal scores plot(s) correspond to which types of data? Type `gen` to see if you're right. Try the last two lines again, with 50 replaced by 25, 100, or 500.

(d) The Abisko dataset from the `mev` package contains precipitation data for all rainy days within the time frame 01.01.1913–31.12.2014 for Abisko. The following loads the data and sets precipitation to zero for the dry days:

```
data(abisko)
prec <- seq(from=min(abisko$date), to=max(abisko$date), by="day")
prec.y <- rep(0, length(prec))
prec.y[prec %in% abisko$date] <- abisko$precip
abisko <- data.frame(date=as.Date(prec), precip=prec.y)
```

To plot precipitation as a function of time:

```
plot_abisko1 <- function () {
  dates <- as.Date(c("1940-01-01", "1979-12-31"))
  plot <- ggplot(abisko, mapping=aes(x=date, y=precip))+
    geom_point(pch=16, cex=0.7)+
    labs(x="", y = "Precipitation (mm)")+
    scale_y_continuous(limits = c(0,79), expand = c(0, 0))+
    scale_x_date(limits = as.Date(c('1913-01-01', '2015-01-01')), expand = c(0, 0))+ 
    theme_classic(base_size=11)+ 
    theme(axis.text = element_text(size = 10),
    panel.background = element_rect(fill = "white",
    colour = "white",
    size = 0.5, linetype = "blank"))
  ggsave(filename = "figures/abisko1.png", plot = plot, bg = "white", width = 2000,
  height = 1000, unit = 'px', dpi=250)
}
```

Apply `plot_abisko1()` and comment on the resulting plot (which is stored in a directory). Alternatively, you may try `plot(abisko$precip[abisko$precip>0], pch=".")`, which drops the zeros.

(e) The following function first takes the maximum precipitation for each month, and makes a QQ-plot of them against the theoretical quantiles of a Gumbel distribution. Extend the function so that it takes also yearly maxima and adds the corresponding points to the QQ-plot.

```
plot_abisko2 <- function (){
  abisko.max <- matrix(NA, 102, 12)
  year <- c(1913:2014)
  for (i in 1:102) for (j in 1:12)
  { k <- (year(abisko$date)-1912==i & month(abisko$date)==j)
    abisko.max[i,j] <- max(abisko$precip[k]) }
  mon.max <- c(abisko.max)
  mon.n <- length(mon.max)

  plot1 <- ggplot()+
    geom_point(aes(x=qgumbel(c(1:mon.n)/(mon.n+1)),
```

```

y=sort(mon.max)), pch=16,cex=0.7) +
  labs(y="Ordered maxima (mm)", x="Gumbel plotting positions") +
  theme_classic(base_size=11) +
  theme(axis.text = element_text(size = 10),
  panel.background = element_rect(fill = "white",
  colour = "white",
  size = 0.5, linetype = "blank"))

pl <- cowplot::plot_grid(plotlist = list(plot1),
  labels = c(""),
  ncol = 1)
ggsave(filename = "figures/abisko2.png", plot = pl,
  bg = "white", width = 900, height = 900, unit = 'px', dpi=250)
}

```

Apply `plot_abisko2()` and look at the resulting QQ-plots. Do you notice differences? In which case does the Gumbel distribution provide a better fit to the maxima?

2. (a) An exponential random variable X with mean $1/\lambda$, with $\lambda > 0$, has density function $f(x) = \lambda \exp(-\lambda x)$ for $x > 0$. Using the `rexp()` function, generate samples of standard exponential random variables of sizes $n = 50, 100$. Use a QQ-plot to compare the empirical and theoretical quantiles.
- (b) A homogeneous Poisson process $N(t)$ is a random process that takes values in $\mathbb{N} \cup \{0\}$ and is indexed by $t \in \mathbb{R}_+$. At time $t > 0$ its probability mass function is $P(N(t) = k) = (\lambda t)^k \exp(-\lambda t)/k!$, $k \in \mathbb{N} \cup \{0\}$, where $\lambda > 0$ is called the rate or intensity.

For independent and non-negative random variables X_i consider the process $S_k = \sum_{i=1}^k X_i$. Each of the X_i 's is the interval between events $i - 1$ and i (we set $S_0 = 0$). Let $N(t)$ denote the number of events up to time t , and assume that this is a homogeneous Poisson process with intensity λ . Show that the intervals X_i are exponentially distributed. Find the mean parameter.

Hint: The event $N(t) = k$ occurs only when $S_k \leq t$ and $S_{k+1} > t$.

- (c) For the variable $Y = 1/X$ find the cumulative distribution function, and compare the empirical and theoretical quantiles via a QQ-plot.

3. The Lomax distribution is given by

$$P(Y \leq y) = 1 - \frac{\beta^\alpha}{(\beta + y)^\alpha}, \quad y > 0, \alpha, \beta > 0.$$

- (a) Create a function in R for the negative log-likelihood $-\ell(\alpha, \beta)$ of a sample of size n .
- (b) Compute the maximum likelihood estimates $(\hat{\alpha}_{MLE}, \hat{\beta}_{MLE})$ of (α, β) and their standard errors for the (positive values in the) Abisko dataset from Problem 1.

Hint: Use the function `optim(..., hessian = T)`.

- (c) Show that the log-likelihood for a sample of size n can be expressed as

$$\ell(\alpha, \beta) = n \log(\alpha/\beta) - (\alpha + 1)S(\beta),$$

where $S(\beta) = \sum_{i=1}^n \log(1 + y_j/\beta)$. Show that, apart from additive constants (i.e., terms that do not depend on y , α , or β) the profile log-likelihood for the parameter β can be written as

$$\ell_P(\beta) = \max_{\alpha} \ell(\alpha, \beta) = -n \log S(\beta) - n \log \beta - S(\beta), \quad \beta > 0.$$

Hence plot this function for the Abisko data. What do you conclude?