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2.1 Point Processes slide 43

Lightning strikes within 30km of the Swiss nuclear sites

O Leibstadt
Beznau
Goesgen

X Muehleberg
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Point process
0 A point process is a stochastic model for a point pattern P = {x,z9,...} lying in a state
space £. We also call a point an event.

0 We visualise £ C R?, but £ might be more complex, e.g., £ = R x C, where C is a space of
functions—then a ‘point’ would be z = (u, f) € £, with u € R and f € C.

[0 The set £ must allow us to count how many points of P lie in any suitable subset A C &, giving

NA)=[PNA =) IzePnA), ACE,

where I(+) is an indicator function.

0 Two points cannot exactly coincide: P must be simple (or orderly) — otherwise we would not
know how many points there are.

OO If you know about measures .. .the function N(A) is

— a counting measure on &, since it counts the number of elements of P in any (measurable)

set A,
— a Radon measure if N(A) < oo for any A compact (in a suitable topology on &),

— arandom measure if the points P arise at random, since then N(A) is a random variable
computed from the (random) P.
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Laplace transform

[0 If it exists, the Laplace transform of a scalar random variable X is defined as
E{exp(—tX)} = Mx (1),

where Mx is the moment-generating function (MGF). This is useful because

— there is a bijection between distributions and MGFs, i.e., if we recognise Mx, then we know
the corresponding distribution;

— the continuity theorem tells us that if {X,,}, X have CDFs {F,,}, F for which the MGFs
M, (t), M(t) exist and there exists a > 0 such that

lim M, (t)=M(t), 0<I|t <a,
n—o0
then X, EEN X, i.e., X,, converges in distribution (weakly, in law) to X.
— Hence for large enough n we can approximate the distribution of X,, by that of X.

[0 On the next slide we will extend this to point processes, but first, a simple example:

Theorem 1 (Law of small numbers) If X;, ~ B(n,p,) and np, — X\ > 0 when n — oo, then the
limiting distribution of X,, is Pois()\), i.e., Xn — X, where X ~ Pois()).
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Note to Theorem 1
0 The MGF of X is

M(t) = E(eX) = i AT ) = e f:()\et)x/m! =exp{Ae'—-1)}, teR.
=0 =0

[0 The MGF of X, is

n

M, (t) = BE(e!*") = Z et <Z>pﬁ(1 =) = (1=pn +pnet)n, teR.
=0

Let p, = A /n, where A\, — A, and note that as n — oo and for any real ¢,

An(et —1

(1= ot puc)" = <1+ )>n—>exp{)\(et—1)}.

n

O As M, (t) — M(t) for all real ¢, the continuity theorem implies that X, L2, x.

http://stat.epfl.ch note 1 of slide 46
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Laplace functional

0 We specify properties of P through the finite-dimensional distributions of N(-), i.e.,
P{N(Al) :nl,...,N(Ak) :nk}, Niy...,NE € {0,1,2,... ,},

for all possible choices of sets A;,..., A;, and all k =0,1,2,....
O An efficient way to do this is through the Laplace functional,

Lr(f) = {exp (— / fdP) } where [ gap = [ s@pan = X f@),

zeP

for functions f > 0 that are positive only on a bounded set. If f(z) =), t,I(x € A;), then
Lp(f) is the joint MGF for the N(A,).

0 Under mild conditions, there is
— a bijection between point processes and Laplace functionals; and

— the continuity theorem can be generalised.
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Convergence of point processes

Definition 2 A sequence of random variables { X,,} with corresponding CDFs {F,,} converges
weakly (or in distribution) to a random variable X with CDF F if

lim F,(x) = F(x) at every x where F is continuous.

Definition 3 A sequence of point processes {P,} with corresponding counts {N,(-)} on &

converges weakly (or in distribution) to a point process P with count N(-), written Py, Ly p,if
for all choices of k and all compact sets Ay, ..., A, C E such that

P{N(@QA;)=0}=1, j=1,...,k
where OA; is the boundary of Aj;,
{No (A1), N (A 25 {N(A), ..., N(Ap)}, 71— oo.

Theorem 4 (No proof) The point processes Py, Pa,. .. converge weakly to the point process P on
& if and only if the corresponding Laplace functionals converge for every continuous non-negative
function f on £ with compact support, i.e., as n — 0o,

[,pn(f):E{exp <—/fd77n>} —>[,p(f):E{eXp (—/fdP)}.
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Kallenberg’s theorem
O Kallenberg’'s theorem gives another way to establish the weak convergence of {P,,} to a simple
process P when £ C R.
O Forany ACE, let Ny(A) =[P, N Al Then if
— B C & is any interval,
— C is any finite union of disjoint sub-intervals of &,
and if

E{Nn(B)} = E{N(B)}, P{Na(C) =0} = P{N(C) =0}, n— oo, (2)

then P,, converges weakly to P.
0 When £ C RP, the same result holds if intervals are replaced by rectangles,

(a,b] ={z = (z1,...,2p) 1ag < xq < bg,d=1,...,D} C &,

where aq < by for each d.

[0 Thus weak convergence of point processes to a simple limiting process in R” entails establishing
convergence of expected counts for rectangles and of the void probabilities of finite unions of
rectangles.

[0 See Kingman (1993) Poisson Processes and Daley and Vere-Jones (2002, 2008), An Introduction
to the Theory of Point Processes.
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Poisson process

Definition 5 A Poisson process is a random countable subset P of a state space £ such that

O  the random variables N(A1), ..., N(Ay) corresponding to any collection of disjoint subsets
Ai, ..., A of £ are independent; and

O forany A C &, N(A) has the Poisson distribution with mean p(A), where 0 < u(A) < oo, and
u(A) < oo for compact A.

Comments:
O if A=J,A; is a countable union of disjoint sets, then N(A) = >>. N(A;), so
n(A) = >, u(Aj), and p is a measure; called the mean measure of P;
O u must be diffuse, i.e., u({x}) =0 for every x € &;
O ifE CRP, A=lay,z1] X -+ x [ap,xp], and if
" u(A)

[/J(xl""’xD) = 8301---8:61)

exists and is finite, then /i is called the intensity function of P;
O if g(x) = [, then P is called homogeneous. Otherwise it is inhomogeneous.

O  We simplify notation by replacing p{(a,b]} by u(a,b], etc.
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23



Conditioning

Theorem 6 (Conditioning) Let P be a Poisson process with mean measure u, and suppose that
A C & is such that 0 < u(A) < oco. Conditional on the event N(A) = n, the n points of P N A have
the same distribution as n points generated independently at random in A with measure

pa(B) = pu(B)/u(A), for B C A.

O If u has intensity ji(x), then we can generate points of P in A by
— generating a value n of N(A) ~ Poiss{u(A)};

— then generating X1,..., X, Py f(x)/pu(A) for z € A.

[0 The process generated at the second step is a binomial process.

Lemma 7 The Laplace functional of a Poisson process P on £ with mean measure [ is

ton = |- [{1-e7}uian).
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Note to Theorem 6

If we observe a Poisson process with intensity fi(x) on the set A, and there are points at
{z1,...,2,}, then the corresponding probability element is

exp{—p(A)} x H,:L(mj), {z1,..., 20} C A

Properties of the Poisson process imply that N(.A) has a Poisson distribution with mean p(.A), so the
conditional density of the n points in A, given that N(.A) = n, is the ratio

n

exp{—pu(A)} x TTj-y ;) _ 1(Z; T T
p(A)exp{—u(A)}/n! H{ .A}’ {z1,..., 20} C A

Now consider the measure p4(B) = u(B)/u(A), for B C A, which is a probability measure on subsets
of A, because it is non-negative and ,uA(.A) = 1. The corresponding probability density is fi(x)/u(A)
(z € A), so the joint density for independent identically distributed variables X1,..., X,, with
distribution p.4 is [T;_,{/2(x;)/u(A)}, which is almost the conditional probability above. The
additional factor n! arises because the point process is unlabelled: the same density would arise for
any of the n! permutations of Xi,..., X, that gave the outcome {z1,...,z,}.
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Note to Lemma 7

Let f > 0 have support only on a compact A, so u(.A) < co. Conditional on N(A) = n,
[ f@)P(dz) = 375, f(X;), where {X1,..., X, } C A are independent with density i(x)/u(A).
Thus

E[exp{—/f(:v)?(dx)}'N(.A):n} — E|exp _jzn;f(xj) N(A) = n

- { [ e
Hence

plow{- [swpan}] = S{ [ ereuanua) 1A e

n=0

= exp /,4 e‘f(x’u(dw)—u(fl)]

~ exp _/A{1—e—f<ﬂ»‘>}u(dx)]
~ exp —/g{l—ef(m)},u(dx)],

as required, since 1 — exp{—f(z)} = 0 outside A.

http://stat.epfl.ch note 2 of slide 52

Superposition and colouring

Theorem 8 (Superposition) If Py, Py are independent Poisson processes on R” with mean
measures 1, (o, then their union Py U Py is a Poisson process with mean measure iy + .

Theorem 8 extends to a countable number of Poisson processes.

Theorem 9 (Colouring) Let P be a Poisson process with intensity ji(x). Colour a point of P at x
red with probability v(x); otherwise colour it green. Then the red and green sets of points Preq and
Phgrcen are independent Poisson processes with intensity functions

ﬂred(x) = ,u(ac)w(x), ﬂgreen(x) = :u(x){l - 7(56)}

The colouring theorem is in some sense the inverse of the superposition theorem, and it too applies
with a countable number of colours.
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Note to Theorem 8

[0 This looks easy using the Laplace functional for P; U Po, which is

Lrm (N =E e {~ [ s@PiUPan .

Now

[ r@Pup@n = [ 1@Pian + [ 1P

and the two processes are independent, so

E {exp{—/fd(PluPQ)H = E{exp (—/fdﬂ)} XE{exp (—/fdPg)}
= ew{- [(1=e ) ampxew{- [ (1-¢7) dua}
= eXP{—[g(l—é’f) d(MH-Mz)},

which is the Laplace functional of a Poisson process with mean measure p1 + po.

[0 The catch with the argument above is the assumption that points of P; and P, do not coincide,
so that
PPiNP,NnA=0)=1

for any A for which p1(.A), pu2(.A) are both finite. This is intuitively obvious but takes a bit of
measure-theoretic work to prove.
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Mapping

Theorem 10 (Mapping) Let P be a Poisson process on £ with mean measure i, and suppose that
the function g : £ — £* maps £ into £*. Define

pA) = pfg (A}, AT CEn

If
(i) w*({z*}) = p*(x*) = 0 for every z* € £*, and
(i) u*(A*) < oo for any compact A*,
then P* = g(P) is a Poisson process on £* with mean measure p*.

Here
O (i) implies that g does not create atoms in £*,
O (i) implies that no compact set A* C £* has infinite measure,

which are both needed for P* to be Poisson.

Example 11 /f P is a homogeneous Poisson process of unit rate on (0,00), and g(z) = 1/x, show
that g(P) is a Poisson process and find its intensity function. What if g(x) = [z] or g(x) = |sinz|?
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Note to Example 11

0 The mean measure of P is given by pfa,b] = (b—a), for 0 < a < b < oc.
(i) The function g maps (0,0) to (0,0c), and g = g~ !, so g~ !(a*) = 1/2* satisfies
wll/z* 1/z*] = (1/x* —1/x*) =0 for any 0 < z* < 0.
(i) Any compact set A of (0,00) is a subset of a set [a, b] for some 0 < a < b < 00, so

p(A) = sl A) = [

1/a
/l(x)dacg/ ldm:/ dx = (1/a —1/b) < cc.
g-1A ~1[a,b] 1

g /b

Hence g(P) is indeed a Poisson process, and since pfa,b] = (1/a — 1/b), its intensity function is
dpla,b]/db = 1/b2, for b > 0.
A sketch shows what happens to the intensities of P and g(P).

O With g(z) = [z], where [z] is the smallest integer greater than or equal to z, then condition (i)
fails whenever x* € N, so the resulting process is not Poisson, as points of P* could be
superposed on the positive integers and thus N*(-) is not well-defined. Equivalently,

p({n}) = plg  ({(nP)] = p{(n -1}y =1, neN,

so pu* has atoms on every positive integer and thus is not diffuse.

O With g(z) = |sin(x)| we have £* = [0,1], and it is easy to check that while condition (i) is
satisfied, p*([a,b]) = oo for any 0 < a < b < 1, so condition (ii) fails; P* has an infinite number
of points in any interval.
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Example

Example 12 Let P be a Poisson process with € = Ri with x = (r,w) generated by
1
uf{(r,00) x (w,00)} = = x {1 - F(w)}, rw>0,
T

where o > 0 and F' is the CDF of a positive continuous random variable W with unit expectation.
Show that ¢ = rw defines a Poisson process and find its intensity.

w

00 05 10 15 20 25
I I I
S———

w

00 05 10 15 20 25
L L L
.

00 05 10 15 20 25 00 05 10 15 20 25

r r

Left panel: first 1000 points (r,w) of a Poisson process sequentially generated on Ri. Right panel:
mapping of the points shown in the left panel to ¢ = rw, shown as + on the diagonal, with the
mapping function shown by the curved grey lines.
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Note to Example 12

O In the picture P = {(R;,W;) :i=1,2,...}, where Ry > Ry > --- > 0 are generated sequentially

by setting R; = (Ey +--- + E;)71, with E; Py exp(1), and W; = exp(oe; — 02/2), where

e N N(0,1), independent of the E;; note that E(WW;) = 1. The first 1000 points of a realisation
of such a process are shown in the left-hand panel of the figure; the full realisation would have an
infinity of points at the left-hand edge of the panel, because p{(r,o0) x (0,00)} =1/r — o0 as

r — 0.

[0 In the general case the mean measure has an intensity function ji given by its derivative at the
upper right corner of a rectangle (r',r) x (w',w), i.e.,

0*p{(r', 1) x (w',w)}

lrw) = orow
82
= Fraw W) =l w) = u(r',w) + u(rw)} (3)
= %2 x f(w), 7w >0, (4)

where we have written pu(r,w) = pu{(r,00) x (w,00)} and so forth, and f denotes the density
function corresponding to F'.

O Let g(r,w) = rw, corresponding to setting Q; = R;W;, which amounts to collapsing the points
shown in the left-hand panel onto the diagonal line shown in the right-hand panel. For any ¢ > 0,
w*(q) = p[{(r,q/r) : ¥ > 0}] = 0 because i has a density with respect to Lebesgue measure and
the set {(r,q/r) : 7 > 0} has Lebesgue measure zero, so this transformation does not create
atoms. We can check the second property of u* once it is calculated. Note that Q = RW > ¢ if
and only if R > ¢/W, and that A, = {(r,w) : rw > ¢} has measure

w@=ntd) = [Tsw) [T e

=q/w T

_ /Ooof(w) [—H;wdw
= [ st du

q/w
_ éE(W) — % ¢>0. (5)

Hence Q); = R;W; is also Poisson, with the same mean measure as the R;. This implies that the
second property is also satisfied: any compact set A* is a subset of (¢1,¢2) for some g2 > ¢1, so

pF(A*) < p*(gr,00) = (g2, 00) = g1 ' — g5 " < o0,

[0 The restriction of P to a subset £ of £ clearly also follows a Poisson process, with mean measure
w(A) = p(E NA). For example, if we let £ = (0,00), consider Ry, Ro, ... and let £’ = (2/,00)
for some 2’ > 0, then we retain only those points R; exceeding 2’. As u(&') = 1/7 is finite, these
R; can be generated by first simulating a Poisson variable N’ with mean 1/2/, and if N’ =n,
simulating n independent variables on the interval (2/,00) with survivor function 2’/z; these
Pareto variables have probability density function 2’/2% (z > 2).
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Marking

Theorem 13 (Marking) Let P be a Poisson process on £ with mean measure . Attach a random
variable y,., called the mark, to each point x of P; the distribution of y,, € Y may depend on x but
not on any other point of P. Then the points (x,y,) form a Poisson process P* in the product space

E x Y with mean measure
/ / Ju(dz), CCEx,
7y

where v, (+) is the conditional probability measure of y,. given x.

[0 This provides an approach to making new Poisson processes, by attaching random variables to
existing processes, and (perhaps) then applying the mapping theorem.

O If y, takes a countable number of values (= colours), then the colouring theorem shows that the
corresponding subsets of P are independent Poisson processes.
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Note to Theorem 13

The Laplace functional of P* is

(- f o)) - el )}

and the inner expectation on the right-hand side is

H/ .y) dy)_exp< /f d7>>

zeP

say, where

f7(x) = —log / @Y 4 (dy).
%

Thus the Laplace functional of P* is that of the Poisson process P with f replaced by f*. But since

/g{l—ef*(m)},u(dx) = /5{1_/yef(x,y) Vx(dy)}u(dx)
- /y {1-e e} v dynan),

http://stat.epfl.ch note 1 of slide 56

the result is established.
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2.3 Poisson Modelling of Extremes slide 57

Basic result

Theorem 14 Let Xi,..., Xy, i F form to blocks each of n observations, and suppose that
sequences {a,} > 0 and {b,} exist such that

P {max(X1,...,Xpn) —bp}/an < z] - G(z), n — oo,
where G is non-degenerate. Then as n — oo the point processes
Prn={/(n+1),(X; —=bp)/an) :j=1,...,nto}
on & =[0,ty] x &, converge in distribution to a Poisson process P with mean measure
p{(t',t) x [x,00)} = (t —t)A(x), 0<t <t<ty, ze€& ={a €eR:A@a) < oo}, (6)

where
—1/¢

Alz) = <1+gx;’7>

depends on parameters n,§ € R and 7 > 0 and a; = max(a,0) for real a. The corresponding
intensity function is

+

o\ e
“A(z) =71 <1+gw ”> > 0.

T /4
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Point process limit

(X-by/
(X-b)/a
(X-b)/a
(X-b)/a

00 02 04 06 08 1.0 00 02 04 06 08 1.0 00 02 04 06 08 10 00 02 04 06 08 10
t t t t

O Here & C RP, so we only need Kallenberg's theorem: for A C £, let N,,(A) = |P, N A|. Then if
B C & is any rectangle, and C is any finite union of disjoint rectangles of &, and if

E{Nn(B)} = E{N(B)}, P{Na(C) =0} = P{N(C) =0}, n— oo, (7)

D
then P, — P as n — oc.
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Forms of A(z)

O A(x) is decreasing, but has three distinct forms:
— when £ >0,
+ ) S - )
o= { v <n—tfe

(Lrezmy Vo as g1/,

which is finite only for x > n — 7/¢, so A(A) = 400, giving infinite counts, for any set A that
goes below n — 7/¢;

— for £ = 0 we take the limit when & — 0, giving

AMz) = exp{=(z —n)/7}, = €R,

which is finite for all z;
— when £ <0,
(1 +§ﬂ)71/£ r<n—T1/E
Ax) = LA ’
07 x Z n—- 7—/é.7
which is finite for all z.

O When £ <0 the limiting mass at —oo is infinite, so any set A considered must have a finite lower
bound.
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Implications: Maxima

O A rescaled block maximum Y,, = {max(Xy,...,X,) — b, }/a, satisfies
P(Y, <y)] = P{N.{(0,1) x [y,00) =0}
— P{N{(0,1) x [y,00) =0} n — oo,
= eXp[_M{(Ov 1) X [y7 OO)}]7
= expl{-A(y)}, yeR,
so a block maximum has a limiting generalized extreme-value (GEV) distribution,

R Vi3
G(y):exp{—<1+£y 77) }, y e R. (8)

T /4

[0 Let Y] >--->Y, denote the r largest rescaled order statistics in a block, i.e., Y7 is the
maximum, etc. In the limit Y5 is the largest of an infinite number of rescaled observations
(Xj — bp)/an, so its distribution is also G, but conditioned on Y, < Y;. Hence

P(Ya<y2 | Y1 =y1) =exp{A(y1) — Aly2)}, w2 <1,

and it follows that the limiting joint density of the r-largest order statistics Y. < --- < Yj is

f(yla . ayr) = eXp{_A(yr)} H{_A(yj)}’ Yp < - < Y1. (9)

J=1
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Implications: Threshold exceedances

[0 Consider the ‘forgetting’ mapping g : R? — R with g(¢,z) = z, giving the process of event sizes
P* = g(P) without their times. The mapping theorem (Theorem 10) implies that P* is Poisson
with mean measure

[z, 00)} = plg [z, 00)}] = u{[0, to] X [, 00)} = to{1 + &(z —n)/r} "

O ForyeR,let Ay = [y,00) and let N*(A,) = [P*NA,|.
0 The conditional property (Theorem 6) implies that conditional on N*(.A,) = n, these n threshold
exceedances have the same distribution as n points generated independently on A, with measure

P (Auss) _tofl+ € —u—mrpe " (

—1/¢
1+ ££> , x>0,
1 (Au) tof1+&(u—n)/r37 "

ou)

where o, = 7+ {(u — n).
OO Hence, provided that o, > 0, exceedances of the threshold u arise with rate A(u) and are
independent with the generalized Pareto distribution (GPD)

2\ e
H(z)=1- <1 + §0—> . x>0, (10)
u/ +
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Statistical applications

[0 Theorem 14 gives the basic models for univariate extremes:
— (quite often) we analyse block maxima by fitting the GEV (4);
— (less often) we analyse the r largest observations in a block by fitting model (5);
— (quite often) we analyse threshold exceedances either
> by fitting the basic Poisson process model with mean measure (2) or
> by fitting threshold exceedances using the GPD (6).

—  We can ‘mix and match’ these models if necessary — in the next slide there are annual
maxima for the first 10 years, then daily values, so a likelihood can be constructed using the
GEV for the maxima and then the GPD for exceedances of a suitable threshold.

[0 In all cases statistical questions arise:
— what should we try and estimate, and how?
— how do we known whether our assumptions are OK?
— the asymptotic models will be fitted to finite-sample data — does this introduce bias?
— are our conclusions robust to model failure?
[0 In the next chapters we attempt to answer these questions.

[0 The Poisson process viewpoint will reappear later.

http://stat.epfl.ch slide 63

32



Vargas data
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Vargas maxima
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Note 1 to Theorem 14

O If a limiting distribution G for rescaled maxima exists, then
P{max(X1,...,Xy) —bn}/an <y] = P{max(Xy,...,X,) <b,+any}
F™(by, + any)
L n{l — F(b, + any)} n.
n

Hence a limiting function A(y) must exist such that
An(y) = n{l = F(by + any)} = Aly), n— oo

O Let H(z) = —log{l — F(x)} denote the cumulative hazard function corresponding to F', and
choose b, = b such that H(b}) = —logn, so that

log Ay (y) = H(by + any) — H(by).

0 We suppose that F' is continuous, places probability in an interval [z, x*], where either or both
limits might be infinite, F' is not defective (so there is no mass at z*), that H is twice
continuously differentiable with reciprocal hazard function r(xz) = 1/H’(x), and that
lim,_, .+ r'(z) = & is real and finite. These are sometimes called the von Mises conditions.

0 Then

Yy 1 1
H(bn + any) - H(bn) = an/ dz,
A

y
- dr=a,
by, + anx) r=a /0 7(by) + anxr’{b, + sn(x)}

where s, () lies between zero and z. If we now choose a,, = a} = r(b}), which is positive
because r(z) = {1 — F(x)}/f(x), we have

y 1 Y 1
H(b +a’y) — H(b! :/ dx:/ z)dz,
where &, = /(b)) and g, (z) = (1 + &) /{1 + 2r'{b} + sn(2)}.
0O The implicit function theorem implies that s, (x) is continuous in x and so is 7/, so g, () is
continuous in x, and one can check that g, (z) — 1 as n — oo. Hence in the interval where
1+ &,x does not change sign, we can use a mean value theorem for integrals and choose y* such
that

dz = gn(y*) x 5;1 log(1 + &)y,

U |
H(b, +a, —Hb:z=n*/
( any) (b) g(y)01+5nx

where we add the (-); to remind us that the term in brackets must be positive. Now
En=7'(b) > &and 0 < y* <yasn— oo, so

lim H(by, + any) — H(by) = € ' log(1 + &y)+ = log A(y),
as required. This establishes sufficient conditions under which a maximum has limiting

distribution exp{—A(y)}, with n =0 and 7 = 1. We need the more general case to allow for the
fact that b,, and a,, are unknown in applications (because F' is unknown).
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Note 2 to Theorem 14
[0 To establish the Poisson convergence, define the binomial processes
Prn={0/(n+1),(X; —bp)/ay):j=1,...,nte}, n=12...,

and the corresponding count process N, () on £ = [0, tg] X &,.
O Let 0 <t <ty <tyand x; < xo determine the rectangle A = (t1,t2] X (z1,x2], let

1(A) = (t2 — t){A(z1) — A(z2)}, ACE,

and let P denote a Poisson process on £ with mean measure .

0 We now check Kallenberg's conditions. If [z] is the integer part of z, then

E{N,(A)} = [(n+Dta—(n+1)t;] x P{z1 < (X; —by)/an < z2}
_ e+ D —t)] A (21, 2]

= (t2 — t1)A(z1, 22] = p(A), n— oo,
which verifies the first condition.

[0  For the second condition, let C be a union of a finite number of disjoint rectangles of £, and note
that we can write C = Ui?:l Ti x UlL:i1 X; 1, where the 7; C [0,1¢] are disjoint intervals, and the
intervals X;; C R are disjoint for each i. Let 71 = (t1,t2], let &; = U{;’l Xijpand B; =T, x &,
and note that independence and identical distribution of the X; gives

P{N,(B1) =0} = P{(X;—by)/a, & &;}mFDlt2—t1)]
n1 Ln+1)(t2—t1)] /n
= [T
n

— exp{—|Th|A(X1)}, n — oo,
= exp{—u(T1 x A1)}
This applies for each 7;, and the corresponding variables X; are independent, so

k
P{N,(C)=0} = HP {Na(B;) = 0}

k
— Hexp{—,u(ﬁ x X))}, n— oo,

=1
k
- on{-3 e
=1
= €exp {_M(C)}7

which establishes the second condition. Thus P, L, P.
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