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Série n˝7

L’Exercice 1 de cette Série est le même que l’Exercice 2 de la Série précédente.

Exercice 1 : Soit L0 le langage (égalitaire) du premier ordre de l’arithmétique
t0, S,`,ˆu. Pour le modèle standard N “ xN, 0, S,`,ˆy nous posons T “

ThpN q la L-théorie de N, i.e.

ThpN q “ tφ | φ est une L-formule close telle que N |ù φu.

Nous définissons par induction le terme n pour n P N comme 0 “ 0 et n` 1 “
Spnq.

1. Montrer qu’il existe un modèle M de T dans lequel il existe un élément
m P |M| tel que pour tout n P N non nul, nM est un diviseur de m.

2. Montrer que pour tout modèle M de la théorie T il existe un unique
plongement p : N ÑM.

Exercice 2 : Nous rappelons qu’un ordre total est un couple xE,ăy où E
est un ensemble et ă est une relation binaire sur E telle que pour tous x, y, z
appartenant à E :

1. px ă y ^ y ă zq Ñ px ă zq ;

2. ␣px ă xq ;

3. x ‰ y Ñ px ă y _ y ă xq.

Un bon ordre est un ordre total xE,ăy tel que pour tout sous-ensemble non
vide S de E il existe un élément m P S qui est ă-minimal, i.e. pour tout s P S
on a s ­ă m.

1. Montrer que si xE,ăy est un bon ordre alors il n’existe pas de chaîne
infinie descendante, i.e. une suite peiqiPN dans E avec e0 ą e1 ą e2 ą . . .

2. Soit xE,ăy un ordre total. Montrer en utilisant explicitement l’axiome du
choix, ou l’une des ses formes équivalentes, que s’il n’existe pas de chaîne
infinie descendante, alors xE,ăy est un bon ordre.

3. Soit L un langage égalitaire du premier ordre contenant uniquement le
symbole de relation binaire ă. La classe des bons ordres, i.e. des L-
structures M “ xM,ăy telles que xM,ăy est un bon ordre, est-elle axio-
matisable ? Est-elle finiment axiomatisable ?
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Exercice 3 :

1. Soient E un ensemble et F un filtre sur E. On dit que F est maximal si
pour tout filtre F 1 sur E, F Ď F 1 implique F “ F 1. Montrer qu’un filtre
F sur un ensemble E est maximal si et seulement si c’est un ultrafiltre.

2. Nous rappelons qu’un ensemble partiellement ordonné pA,ďq est dit in-
ductif si tout sous-ensemble totalement ordonné de A admet un majorant.
Lemme de Zorn. Tout ensemble inductif admet (au moins) un élément
maximal.
Montrer que le Lemme de Zorn implique le lemme de l’ultrafiltre.
Lemme de l’ultrafiltre. Soient E un ensemble et F un filtre sur E. Il
existe un ultrafiltre U sur E qui étend F .

Exercice 4 (facultatif):
Dans cet exercice, nous nous proposons de donner une preuve du Théorème

de compacité en montrant qu’un certain espace topologique est compact. Pour
ce faire, nous rappelons les définitions et résultats suivants de topologie :

Définition. ‚ Un espace topologique est séparé (ou de Hausdorff) ssi pour
toute paire de points x et y distincts, il existe un voisinage de x et un
voisinage de y qui sont disjoints.

‚ Un espace topologique est compact ssi de tous recouvrement ouvert de cet
espace, on peut extraire un sous-recouvrement fini.

‚ Un espace topologique est zéro dimensionnel si et seulement si il admet
une base d’ouverts fermés.

‚ Le filtre des voisinages d’un point x P X est l’ensemble

Vpxq “ tV Ď X : DU ouvert, x P U Ď V u.

Une caractérisation des espaces compacts est donnée dans la proposition sui-
vante.

Proposition. Soit X un espace topologique. Les affirmations suivantes sont
équivalentes :

‚ X est compact ;

‚ toute famille pFiqiPI de fermés de X dont l’intersection de toute sous-
famille finie est non vide possède une intersection

Ş

iPI Fi non-vide ;

‚ tout ultrafiltre U sur X est convergent (c’est-à-dire qu’il existe un point
de X dont le filtre des voisinages est contenu dans U).
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Le théorème de compacité que nous allons prouver assure la compacité de
l’ensemble des théories complètes et closes par conséquence sémantique muni
d’une certaine topologie.

Soit L un langage du premier ordre. Pour cet exercice, nous appelons théorie
sur L un ensemble de formules closes de L. Soit X l’ensemble des théories T sur
L telles que :

i) T est complète ;
ii) T est close par conséquence sémantique.

Nous commençons par munir cet ensemble d’une topologie. Pour toute formule
close φ sur L, nous notons

xφy “ tT P X | φ P T u.

1. Montrer que la famille txφy | φ formule close de Lu constitue une base
d’ouverts d’une topologie T sur X.
Indication: Remarquer que xφy X xψy “ xφ^ ψy.

Nous allons maintenant montrer le théorème suivant en trois étapes.

Théorème (Compacité de l’espace des théories complètes). L’espace X des
théories complètes et closes par conséquence sémantique sur un langage L est
compact, séparé, et zéro dimensionnel.

2. Montrer que l’espace topologique pX, T q est séparé.
3. Montrer que pX, T q est zéro dimensionnel.
4. Montrer finalement que pX, T q est compact.

Indication: Pour tout T P X, choisir un modèle MT de T . Puis pour un ultrafiltre
U sur X, considérer la L-structure donnée par l’ultraproduit M “

ś

TPX MT {U .
Montrer que ThpMq est un (le seul) point de convergence de l’ultrafiltre U dans
X, et conclure.

Nous allons maintenant montrer le théorème de compacité en deux étapes.

Corollaire (Théorème de compacité classique). Un ensemble de formules closes
T admet un modèle si et seulement si tout sous-ensemble fini de T admet un
modèle.

5. Montrer que les fermés de X sont de la forme
Ş

iPIxφiy.
6. Montrer le théorème de compacité classique en appliquant la compacité

(sous sa forme parlant des familles de fermés) de l’espace pX, T q à une
famille de fermés judicieusement choisie.
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