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Série n°10

Exercice 1 :

Soit L = {cg,c1,®,®, R} un langage égalitaire du premier ordre, avec ¢q et
c1 deux symboles de constante, @ et ® des symboles de fonction binaire, et R
un symbole de relation binaire. Soit N' = (N, 0,1, +, -, <) la L-structure ou N
sont les entiers naturels et 4, - et < sont ’addition, la multiplication et 'ordre
strict usuels sur N. On note Ty, la £L-théorie de N.

1. Montrer qu’il existe un modeéle dénombrable M de Tyt tel qu’il existe
a € |M)| satisfaisant pour tout n € N M = R(n,a) ou 0 = ¢y et n =
c1 Ei—)cl@---@c} sinon.

~
n fois

2. Pour un modéle M satisfaisant le point précédent, montrer que N n’est
pas isomorphe & M. Montrer aussi que I'ensemble |[M|\{n™ | n € N}
muni de la restriction de ordre RM n’admet pas de plus petit élément.

3. Soit (E,<) un ensemble totalement ordonné dénombrable quelconque.
Montrer qu’il existe une L-structure dénombrable M telle que M = Tyyith
et (E, <) se plonge dans (M|, R™), c’est-a-dire qu'il existe une injection
f:E — M telle que 2 < y ssi f(z)RMf(y).

4. Soit (E, <) un ensemble totalement ordonné de cardinalité quelconque
k. Existe-t-il un modéle M de Tytn tel qu’il existe un plongement de
(B, <) dans {(M|,R <M)? Quelle est la cardinalité minimale pour un
tel modéle?

Exercice 2 :

1. Montrer le théoréme suivant, appelé critére de Vaught.
Théoréme. Soit T une théorie non contradictoire du premier ordre sur
un langage L dénombrable, et telle que T ne posséde pas de modéle fini.
Si tous les modéles dénombrables de T sont élémentairement équivalents,
alors T est compléte.

Indication: Utiliser le théoreme de Lowenheim-Skolem.

2. En déduire le corollaire suivant :
Corollaire. Soit T une théorie non contradictoire du premier ordre sur
un langage dénombrable, et telle que T ne posséde pas de modéle fini. Si
tous les modéles dénombrables de T sont isomorphes, alors T est compléte.
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3. Comme application, montrer que la théorie des ordres denses sans premier
ni dernier élément est compléte en utilisant le résultat du Devoir n°2, a
savoir :

Proposition. Tous les ordres denses dénombrables sans premier ni der-
nier élément sont isomorphes.

Exercice 3 : Soit £ le langage du premier ordre de 'arithmétique {0, S, +, x }.
Pour le modeéle standard NV = (N, 0, S, +, x) nous posons Tuithm = Th(N) la
théorie de N.

En utilisant le théoréme de compacité ainsi que le théoréme de Lowenheim-
Skolem descendant, nous allons montrer qu'il existe exactement 280 modéles
dénombrables de T,.ithm deux-a-deux non isomorphes.

Nous notons k la cardinalité de ’ensemble des classes d’isomorphisme de
modéles dénombrables de T, ithm. Nous allons montrer que k = R0

1. Montrer que x < 280,

Soit P ’ensemble des nombres premiers. Notons x|y la formule de £y donnée
par 3z(zx z = y). Pour tout modéle dénombrable 9t de Tyrithm €t tout élément
a € |M| notons Divgp(a) 'ensemble des nombres premiers qui divisent a dans
M, formellement

Divon(a) = {p € P | M = pla}

p fois

. f—/% .
oti p désigne S---S(0). Nous posons ensuite

D- { pPcp ’ il existe un modéle dénombrable M de T, ithm }

et il existe a € |M| tel que P = Divop(a)
2. Montrer que D = P(P).
3. Montrer que |D| < k- Np.

4. Conclure.



