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Série n˝10

Exercice 1 :
Soit L “ tc0, c1,‘,b, Ru un langage égalitaire du premier ordre, avec c0 et

c1 deux symboles de constante, ‘ et b des symboles de fonction binaire, et R
un symbole de relation binaire. Soit N “ xN, 0, 1,`, ¨,ăy la L-structure où N
sont les entiers naturels et `, ¨ et ă sont l’addition, la multiplication et l’ordre
strict usuels sur N. On note Tarith la L-théorie de N .

1. Montrer qu’il existe un modèle dénombrable M de Tarith tel qu’il existe
a P |M| satisfaisant pour tout n P N M |ù Rpn, aq où 0 “ c0 et n “

c1 ‘ c1 ‘ ¨ ¨ ¨ ‘ c1
looooooooomooooooooon

n fois

sinon.

2. Pour un modèle M satisfaisant le point précédent, montrer que N n’est
pas isomorphe à M. Montrer aussi que l’ensemble |M|ztnM | n P Nu

muni de la restriction de l’ordre RM n’admet pas de plus petit élément.

3. Soit xE,ăy un ensemble totalement ordonné dénombrable quelconque.
Montrer qu’il existe une L-structure dénombrable M telle que M |ù Tarith
et xE,ăy se plonge dans x|M|, RMy, c’est-à-dire qu’il existe une injection
f : E ÝÑ M telle que x ă y ssi fpxqRMfpyq.

4. Soit xE,ăy un ensemble totalement ordonné de cardinalité quelconque
κ. Existe-t-il un modèle M de Tarith tel qu’il existe un plongement de
xE,ăy dans x|M|, R ăMy ? Quelle est la cardinalité minimale pour un
tel modèle ?

Exercice 2 :

1. Montrer le théorème suivant, appelé critère de Vaught.
Théorème. Soit T une théorie non contradictoire du premier ordre sur
un langage L dénombrable, et telle que T ne possède pas de modèle fini.
Si tous les modèles dénombrables de T sont élémentairement équivalents,
alors T est complète.
Indication: Utiliser le théorème de Löwenheim-Skolem.

2. En déduire le corollaire suivant :
Corollaire. Soit T une théorie non contradictoire du premier ordre sur
un langage dénombrable, et telle que T ne possède pas de modèle fini. Si
tous les modèles dénombrables de T sont isomorphes, alors T est complète.
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3. Comme application, montrer que la théorie des ordres denses sans premier
ni dernier élément est complète en utilisant le résultat du Devoir n˝2, à
savoir :
Proposition. Tous les ordres denses dénombrables sans premier ni der-
nier élément sont isomorphes.

Exercice 3 : Soit L0 le langage du premier ordre de l’arithmétique t0, S,`,ˆu.
Pour le modèle standard N “ xN, 0, S,`,ˆy nous posons Tarithm “ ThpN q la
théorie de N .

En utilisant le théorème de compacité ainsi que le théorème de Löwenheim-
Skolem descendant, nous allons montrer qu’il existe exactement 2ℵ0 modèles
dénombrables de Tarithm deux-à-deux non isomorphes.

Nous notons κ la cardinalité de l’ensemble des classes d’isomorphisme de
modèles dénombrables de Tarithm. Nous allons montrer que κ “ 2ℵ0 .

1. Montrer que κ ď 2ℵ0 .

Soit P l’ensemble des nombres premiers. Notons x|y la formule de L0 donnée
par Dzpxˆz “ yq. Pour tout modèle dénombrable M de Tarithm et tout élément
a P |M| notons DivMpaq l’ensemble des nombres premiers qui divisent a dans
M, formellement

DivMpaq “ tp P P | M |ù p|au

où p désigne

p fois
hkkkkikkkkj

S ¨ ¨ ¨Sp0q. Nous posons ensuite

D “

"

P Ď P
ˇ

ˇ

ˇ

ˇ

il existe un modèle dénombrable M de Tarithm
et il existe a P |M| tel que P “ DivMpaq

*

.

2. Montrer que D “ PpPq.

3. Montrer que |D| ď κ ¨ ℵ0.

4. Conclure.

2


