Final exam — Solutions

Graph Theory 2019 — EPFL — Istvan Tomon

1. Prove that in any connected graph G, there is a walk that contains every edge of G exactly
twice.

Solution. We duplicate each edge of G in order to get the new multigraph G’. As G was
connected, G’ is also connected. Also, all vertices of G’ have even degree by construction,
so G’ has an Euler tour. This tour corresponds to a walk on G that uses every edge
exactly twice, as needed.

2. Prove Dirac’s theorem: If a graph G on n > 3 vertices has minimum degree at least 5,
then it contains a Hamilton cycle.

Solution. First observe that G must be connected, because each component contains at
least 0(G) + 1 > n/2 vertices, so G cannot have more than one components.

Take a longest path P = vjv, ... v, in G. By maximality, all neighbors of v; and v, are in
the path. Let us say that an edge v;v;11 is type-1 if v; 41 € N(v1), and let us say that it is
type-2 if v; € N(v). As §(G) > n/2, we have at least n/2 type-1 and n/2 type-2 edges
in P. But P has at most n — 1 edges, so some edge v;v;1; is both type-1 and type-2, i.e.,
01041 and v;vy are edges of G. Then C' = P — 0011 +010j41 + 0V = Uj ... V1041 - . . UkV;
is a cycle.

In fact, C' is a Hamilton cycle. Indeed, suppose not all vertices are contained in C'. Since
G is connected, there must be an edge uv; where v ¢ C. Then there is a path that goes
from u to v; and then all around the cycle C' to a neighbor of v;. This path contains k+ 1
vertices, contradicting the maximality of P.

3. Prove that every connected planar graph on n > 3 wvertices has a triangular face or a
vertex of degree at most 3. (A triangular face is one whose boundary has length 3).

Solution. If there is a triangular face in the graph, we are done. So suppose every face of
the graph is not triangular. As n > 3, this means that the length ¢z of each face F'is at
least four. Then the sum of £ (over all the faces F') is at least 4f (where f is the number
of faces). On the other hand, this sum is 2e (where e is the number of edges) because
each edge is counted twice by the sum. Therefore 4f < 2e¢, i.e., f < e¢/2. Combining this
with Euler’s formula, this gives 2 =n —e+ f < n —e€/2, so e < 2n — 4, which implies
that the sum of degrees of all the vertices is at most 4n — 8. Thus there must be a vertex
of degree at most 3, as required.

4. Let G be a bipartite graph with parts of size 2n and minimum degree at least n. Prove
that G has a perfect matching.

Solution. Let GG have parts A and B. We will check Hall’s condition for A. Take X C A.
If X is empty, then |N(X)| = |X| = 0, so the condition is satisfied. If 1 < |X| < n, then
IN(X)| > n > |X]|, because any vertex in X has at least n neighbors in B. Finally, if
| X| > n, then N(X) = B because every vertex v in B has at least n neighbors in A, so
it must have a neighbor in X, as well. (Otherwise X U N(v) would contain more than 2n
distict vertices in A). In particular, | N(X)| = 2n > | X|, so the condition holds for every
X. By Hall’s theorem, there is a perfect matching.



5. Prove that if a graph G on n vertices does not contain Ky as a subgraph, then G has at
most n3/? edges.

Solution. Let G be a graph on n vertices without a 4-cycle. Let S be the set of “cherries”,
i.e., pairs (u, {v,w}) where u is adjacent to both v and w, with v # w:

We will count the elements of S of in two different ways. Summing over u, we find
S| = X uevi) (dg“)). On the other hand (and this is the crucial observation): every pair
{v,w} has at most one common neighbor (because G is Kjo-free), so S| < (3).
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Here the sum of the degrees is 2| E(G)], so we get 4|E(G)|* < n*(n — 1) + 2n|E(G)|. Or
equivalently,
) n*(n —1)
@R - 2B - Y <
The left-hand side is a quadratic function of | E(G)| which is increasing whenever |E(G)| >
n/2 and positive for |E(G)| = n*/?, so the inequality can only be true if |E(G)| < n3/2.

6. Let n > 2 be an integer, and R(n,n) be the corresponding Ramsey number. Show that any
sequence of N > R(n,n) distinct numbers ay,...,ax contains a monotone (increasing or
decreasing) subsequence of length n.

Solution. Let us color the edges of the complete graph on [N] as follows. Color the edge
ij (with i < j) blue if a; < a; and red otherwise. By the definition of R(n,n), and the
fact that N > R(n,n), we know that this graph contains a monochromatic clique of size

n, say induced by the vertices iy, ...,4, (where iy < --- < i,). In particular, the edges
i;1541 have the same color for all j = 1,...,n — 1. If the color is blue, then this means
that a;,,...,a;, form an increasing subsequence, if the color is red then a;,,...,a; form

a decreasing subsequence. Either way, we have a monotone subsequence of length n.

7. Let G be a bipartite graph. Prove that if X is an eigenvalue of the adjacency matriz of G,
then —\ is also an eigenvalue.

Solution. As G is bipartite, for some s x ¢t matrix B we have
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Since A is an eigenvalue, we have
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for some vector [Z] So Bw = \v and BTv = Aw. But then

e8] =[] =[]

Thus —A is also an eigenvalue.

Let G be a graph, and suppose d > 0 is the smallest number such that G is d-degenerate.

Prove that G has at least @ edges.

(A graph is d-degenerate if each of its subgraphs has a vertex of degree at most d.)

Solution. We know that G is not d — 1-degenerate, so it contains a subgraph H of
minimum degree at least d. Any graph of minimum degree d has at least d+ 1 vertices, so
|V(H)| > d+1. This means that the sum of the degrees in H is at least d|V (H)| > d(d+1),

and therefore H has at least d(dTH) edges and, of course, so does G.

Prove the fan lemma: Let k be a positive integer. If G is a k-connected graph, then for
every vertex s, and for every set T of at least k vertices, there are k paths from s to T in
G that are vertez-disjoint except for their starting vertex s.

Solution. Add a vertex t that is adjacent to all the vertices in T" and call the resulting
graph G’. We first check that G’ is k-connected, i.e., that deleting a set X of at most
k — 1 vertices keeps it connected.

Indeed, if t € X, then G'— X = G—Y for some Y of size at most k—2, which is connected
by the k-connectivity of G. Otherwise, G’ — X can be obtained from G — X (which is
again connected for the same reason), by adding the new vertex ¢ to it and connecting it
to the remaining neighbors. As t has at least k neighbors, not all of them are deleted, so
G' — X is still connected.

Now we can apply Menger’s theorem to G’ and obtain k internally vertex-disjoint paths
from s to t. Removing ¢ from these paths gives paths from s to T that are disjoint aside
from s.

Let n and k be positive integers. Show that the edges of K, can be colored with k colors
so that the number of monochromatic triangles is at most k%(g)
(A monochromatic triangle is a 3-cycle whose edges have the same color.)

Solution. We will show that a random coloring works. So let X be a random variable
counting the number of monochromatic triangles in a random coloring of the edges of K,
with &k colors, and let X7 be a random variable taking value 1 if a given triangle T is
monochromatic, and 0 otherwise. Since the total number of possible colorings of T is k3,
and there are k ways to color T' as a monochromatic triangle, we have that E[Xr] = k/k3.

Since X = ) . Xy, by the linearity of expectation (and since there are (g) possible
distinct triangles in K,,), we have that

B1) = B{3 0] = Y0y = (3)

Thus, there exists a coloring of K,, where the number of monochromatic triangles is at

(5)

most 5.



