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1. Prove that in any connected graph G, there is a walk that contains every edge of G exactly
twice.

Solution. We duplicate each edge of G in order to get the new multigraph G′. As G was
connected, G′ is also connected. Also, all vertices of G′ have even degree by construction,
so G′ has an Euler tour. This tour corresponds to a walk on G that uses every edge
exactly twice, as needed.

2. Prove Dirac’s theorem: If a graph G on n ≥ 3 vertices has minimum degree at least n
2
,

then it contains a Hamilton cycle.

Solution. First observe that G must be connected, because each component contains at
least δ(G) + 1 > n/2 vertices, so G cannot have more than one components.

Take a longest path P = v1v2 . . . vk in G. By maximality, all neighbors of v1 and vk are in
the path. Let us say that an edge vivi+1 is type-1 if vi+1 ∈ N(v1), and let us say that it is
type-2 if vi ∈ N(vk). As δ(G) ≥ n/2, we have at least n/2 type-1 and n/2 type-2 edges
in P . But P has at most n− 1 edges, so some edge vjvj+1 is both type-1 and type-2, i.e.,
v1vj+1 and vjvk are edges of G. Then C = P−vjvj+1+v1vj+1+vjvk = vj . . . v1vj+1 . . . vkvi
is a cycle.

In fact, C is a Hamilton cycle. Indeed, suppose not all vertices are contained in C. Since
G is connected, there must be an edge uvi where u /∈ C. Then there is a path that goes
from u to vi and then all around the cycle C to a neighbor of vi. This path contains k+1
vertices, contradicting the maximality of P .

3. Prove that every connected planar graph on n ≥ 3 vertices has a triangular face or a
vertex of degree at most 3. (A triangular face is one whose boundary has length 3).

Solution. If there is a triangular face in the graph, we are done. So suppose every face of
the graph is not triangular. As n ≥ 3, this means that the length ℓF of each face F is at
least four. Then the sum of ℓF (over all the faces F ) is at least 4f (where f is the number
of faces). On the other hand, this sum is 2e (where e is the number of edges) because
each edge is counted twice by the sum. Therefore 4f ≤ 2e, i.e., f ≤ e/2. Combining this
with Euler’s formula, this gives 2 = n − e + f ≤ n − e/2, so e ≤ 2n − 4, which implies
that the sum of degrees of all the vertices is at most 4n− 8. Thus there must be a vertex
of degree at most 3, as required.

4. Let G be a bipartite graph with parts of size 2n and minimum degree at least n. Prove
that G has a perfect matching.

Solution. Let G have parts A and B. We will check Hall’s condition for A. Take X ⊆ A.
If X is empty, then |N(X)| = |X| = 0, so the condition is satisfied. If 1 ≤ |X| ≤ n, then
|N(X)| ≥ n ≥ |X|, because any vertex in X has at least n neighbors in B. Finally, if
|X| > n, then N(X) = B because every vertex v in B has at least n neighbors in A, so
it must have a neighbor in X, as well. (Otherwise X ∪N(v) would contain more than 2n
distict vertices in A). In particular, |N(X)| = 2n ≥ |X|, so the condition holds for every
X. By Hall’s theorem, there is a perfect matching.



5. Prove that if a graph G on n vertices does not contain K2,2 as a subgraph, then G has at
most n3/2 edges.

Solution. Let G be a graph on n vertices without a 4-cycle. Let S be the set of “cherries”,
i.e., pairs (u, {v, w}) where u is adjacent to both v and w, with v ̸= w:

We will count the elements of S of in two different ways. Summing over u, we find
|S| =

∑
u∈V (G)

(
d(u)
2

)
. On the other hand (and this is the crucial observation): every pair

{v, w} has at most one common neighbor (because G is K2,2-free), so |S| ≤
(
n
2

)
.

The rest of the proof is just calculations. So far we have
∑

u∈V
(
d(u)
2

)
≤
(
n
2

)
or equivalently,∑

u∈V

d(u)2 ≤ n(n− 1) +
∑
u∈V

d(u).

Using Cauchy-Schwarz or AM-QM, we have
(∑

u∈V d(u)
)2 ≤ n

∑
u∈V d(u)2. This, to-

gether with (??), implies(∑
u∈V

d(u)

)2

≤ n2(n− 1) + n
∑
u∈V

d(u).

Here the sum of the degrees is 2|E(G)|, so we get 4|E(G)|2 ≤ n2(n− 1) + 2n|E(G)|. Or
equivalently,

|E(G)|2 − n

2
|E(G)| − n2(n− 1)

4
≤ 0.

The left-hand side is a quadratic function of |E(G)| which is increasing whenever |E(G)| >
n/2 and positive for |E(G)| = n3/2, so the inequality can only be true if |E(G)| < n3/2.

6. Let n ≥ 2 be an integer, and R(n, n) be the corresponding Ramsey number. Show that any
sequence of N ≥ R(n, n) distinct numbers a1, . . . , aN contains a monotone (increasing or
decreasing) subsequence of length n.

Solution. Let us color the edges of the complete graph on [N ] as follows. Color the edge
ij (with i < j) blue if ai < aj and red otherwise. By the definition of R(n, n), and the
fact that N ≥ R(n, n), we know that this graph contains a monochromatic clique of size
n, say induced by the vertices i1, . . . , in (where i1 < · · · < in). In particular, the edges
ijij+1 have the same color for all j = 1, . . . , n − 1. If the color is blue, then this means
that ai1 , . . . , ain form an increasing subsequence, if the color is red then ai1 , . . . , ain form
a decreasing subsequence. Either way, we have a monotone subsequence of length n.

7. Let G be a bipartite graph. Prove that if λ is an eigenvalue of the adjacency matrix of G,
then −λ is also an eigenvalue.

Solution. As G is bipartite, for some s× t matrix B we have

AG =

[
Os×s B
BT Ot×t

]
.

Since λ is an eigenvalue, we have[
λv
λw

]
= λ

[
v
w

]
= AG

[
v
w

]
=

[
Bw
BTv

]



for some vector
[
v
w

]
. So Bw = λv and BTv = λw. But then

AG

[
v
−w

]
=

[
−Bw
BTv

]
= −λ

[
v
−w

]
.

Thus −λ is also an eigenvalue.

8. Let G be a graph, and suppose d ≥ 0 is the smallest number such that G is d-degenerate.
Prove that G has at least d(d+1)

2
edges.

(A graph is d-degenerate if each of its subgraphs has a vertex of degree at most d.)

Solution. We know that G is not d − 1-degenerate, so it contains a subgraph H of
minimum degree at least d. Any graph of minimum degree d has at least d+1 vertices, so
|V (H)| ≥ d+1. This means that the sum of the degrees inH is at least d|V (H)| ≥ d(d+1),

and therefore H has at least d(d+1)
2

edges and, of course, so does G.

9. Prove the fan lemma: Let k be a positive integer. If G is a k-connected graph, then for
every vertex s, and for every set T of at least k vertices, there are k paths from s to T in
G that are vertex-disjoint except for their starting vertex s.

Solution. Add a vertex t that is adjacent to all the vertices in T and call the resulting
graph G′. We first check that G′ is k-connected, i.e., that deleting a set X of at most
k − 1 vertices keeps it connected.

Indeed, if t ∈ X, then G′−X = G−Y for some Y of size at most k−2, which is connected
by the k-connectivity of G. Otherwise, G′ − X can be obtained from G − X (which is
again connected for the same reason), by adding the new vertex t to it and connecting it
to the remaining neighbors. As t has at least k neighbors, not all of them are deleted, so
G′ −X is still connected.

Now we can apply Menger’s theorem to G′ and obtain k internally vertex-disjoint paths
from s to t. Removing t from these paths gives paths from s to T that are disjoint aside
from s.

10. Let n and k be positive integers. Show that the edges of Kn can be colored with k colors
so that the number of monochromatic triangles is at most 1

k2

(
n
3

)
.

(A monochromatic triangle is a 3-cycle whose edges have the same color.)

Solution. We will show that a random coloring works. So let X be a random variable
counting the number of monochromatic triangles in a random coloring of the edges of Kn

with k colors, and let XT be a random variable taking value 1 if a given triangle T is
monochromatic, and 0 otherwise. Since the total number of possible colorings of T is k3,
and there are k ways to color T as a monochromatic triangle, we have that E[XT ] = k/k3.

Since X =
∑

T XT , by the linearity of expectation (and since there are
(
n
3

)
possible

distinct triangles in Kn), we have that

E[X] = E[
∑
T

XT ] =
∑
T

E[XT ] =

(
n

3

)
· 1

k2
.

Thus, there exists a coloring of Kn where the number of monochromatic triangles is at

most
(n3)
k2

.


