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Solutions for the exam

Question 1: Let G be the Wagner graph:

• diameter: diam(G) = 2 (any x, y are connected by
an edge or a 2-long path);

• girth: g(G) = 4 (A-B-F-E is a smallest cycle);

• independence number: α(G) = 3 (see figure);

• chromatic number: χ(G) = 3 (see figure);

• G is not planar (contains a subdivision of K3);

• G is not Eulerian (all vertices have odd degrees);

• G is Hamiltonian (A-B-C-D-H-G-F-E-A is a
Hamilton cycle)

A

B

C

D

E

F

G

H

A proper 3-coloring of G

Question 2: G is a connected graph, therefore it has a spanning tree T (Theorem 3.1). By
definition of a spanning tree, T has the same number of vertices as G, that is n ≥ 2. Hence
T has two leaves (Lemma 2.7). Consider v ∈ V (T ) one such leaf. By definition of a leaf,
T − v is connected. Furthemore T − v is a subgraph of G− v. Thus G− v is connected. The
leaf v ∈ V (T ) = V (G) is the vertex of G that we are looking for.

Question 3: Consider a longest such path P = vk . . . v1wu1 . . . ul, where vk . . . v1w is a red
path and wu1 . . . ul is a blue path. We reason by contradiction and assume that P is not
Hamiltonian. Then there is a vertex x not contained in it. Consider the edge wx. If it is
red, then the path vk . . . v1wxu1 . . . ul satisfies the required property, and it is longer than P
(no matter if xu1 is red or blue). Similarly, if wx is blue, then vk . . . v1xwu1 . . . ul is a longer
such path. Hence if P is not Hamiltonian, we can build a longer path that is the union of
two monochromatic ones, which is a contradiction.

Alternatively, one can prove this statement by induction on n, using the same idea of
looking at wx.

Question 4: Take a longest path v0v1 . . . vℓ in G, which is of length ℓ. Suppose that
ℓ < k. If v0 and vℓ are not adjacent, then by assumption d(v0) + d(vℓ) ≥ k. By maximality,
all neighbors of v0 and vℓ are in the path. Let us now define two types of edges: for i ∈
{1, . . . , ℓ− 1}, an edge vivi+1 is of type 1 if vi+1 ∈ N(v0) and is of type 2 if vi ∈ N(vℓ). Since
d(v0) + d(vℓ) ≥ k > ℓ, there exists an edge vivi+1 which is both of types 1 and 2. Hence
we get a cycle vi . . . v0vi+1 . . . vℓ of length ℓ + 1. In the case where v0 and vℓ are adjacent,
v0v1 . . . vℓv0 is a cycle of length ℓ+1. Now, in both cases, since the number of vertices in the
cycle is ℓ+1 < n, there exists a vertex u not in the cycle. By connectedness of G, there is an
edge uvj where vj, j ∈ {0, . . . , ℓ} is in the longest path. Then we can longer path by adding
u, which leads to a contradiction.



Question 5: Let n < 12 be the number of vertices of G. Since G is planar, the corollary of
Euler’s formula (Proposition 5.3) gives: |E(G)| ≤ 3(n−6). Now, by the handshakes formula,
we have:

∑
v∈V (G) deg(v) = 2|E(G)| ≤ 2(3n − 6) = 6n − 12 < 6n − n = 5n. Finally, by the

pigeonhole principle, this further implies that G has a vertex of degree at most 4.

Question 6: We prove that G is the complete graph by contradiction. Assume G is not
the complete graph, then there exists two distinct vertices x, y ∈ V (G) not connected by an
edge in G, i.e. xy ̸∈ E(G). By the property of G, there exists a proper (χ(G) − 2)-coloring
of G− x− y. We denote this coloring c and the colors it uses {1, . . . , χ(G)− 2}. Now, when
G − x − y is colored by c, the neighbors of x, which do not include y, are colored with the
set of colors {1, . . . , χ(G)− 2}. Thus c can be extended to a proper coloring including x by
assigning it the color χ(G) − 1. Similarly, c can be extended to y by assigning it the color
χ(G)−1. Hence, we have designed a proper (χ(G)−1)-coloring of G. This is a contradiction.

Question 7: Let M1 and M2 be two perfect matchings of a tree T . Consider the subgraph
G of T with V (G) = V (T ) and E(G) = M1∆M2. Then every vertex v ∈ V (G) has degree
0 or 2. So the graph G is a disjoint union of isolated vertices and cycles. However, a tree is
cycle-free. Therefore every vertex in G has degree 0, which implies that M1 = M2.

Question 8: To apply, if possible, one iteration of the Ford-Fulkerson algorithm to the
network with the existing flow, we need to find an augmenting path, i.e. a s, t-path using
only edges with strictly positive residual capacities.

Indeed there exist two: P1 = s, A,B,C,D, t and P2 = s, B,C,D, t; they can be found
using BFS algorithm. Now, using P1, the maximum residual capacity among all edges is
δ = 2, for sA and CD. We can thus increase by 2 the value of the flow along P1 for this
iteration. The resulting flow is shown below on the figure on the left; the associated residual
capacities are shown on the figure on the right. Note that there is no augmenting path in this
new residual graph, therefore the Ford-Fulkerson algorithm terminates. The flow obtained is
maximum, of value 10, and the associated minimum cut is {s, A,B,C}, {D, t}.

Note that if we select the path P2 instead, the flow can be increased by 1 only and
another iteration is required using P1, which remains an augmenting path, for the algorimth
to terminates.
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Initial residual graph and capacities
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New residual graph and capacities

Question 9:

(a) Considering all possible edges, there are 3 different paths of length 2 among any triplet
of vertices. Now, for such path to exist in the random graph G ∈ G(n, p), at least 2
edges among the 3 connecting any 3 vertices must exist. This happends with probability
p2 because edges exist in G with independent probabilities, all equal to p. Thus, the
expected number of paths of length 2 in G is: 3

(
n
3

)
p2.

(b) For each set A of s vertices, let XA be the indicator random variable that A forms
a red clique in Kn colored according to the random process. Then X =

∑
A XA is

the random variable that counts the number of red s-cliques in this randomly colored
graph. Similarly, for each set B of t vertices, let YB be the indicator random variable
that B forms a blue clique. Then Y =

∑
B YB is the random variable that counts the

number of blue t-cliques. Then We have:

E[X] =
∑

A⊂V (Kn)
|A|=s

E[XA] =

(
n

s

)
p(

s
2), E[Y ] =

∑
B⊂V (Kn)

|B|=t

E[YB] =

(
n

t

)
(1− p)(

t
2).

(c) From question (b), we now know that the number of expected number of red s-cliques
and blue t-cliques in Kn randomly 2-edge-colored is:

E[X + Y ] = E[X] + E[Y ] =

(
n

s

)
p(

s
2) +

(
n

t

)
(1− p)(

t
2)

Thus there exists an edge-coloring c, such that the total number of red s-cliques and
blue t-cliques is at most E[X + Y ]. Considering such a coloring of the edges of Kn,
delete one vertex for each red s-clique and blue t-clique. We then get a complete graph

with n−
(
n
s

)
p(

s
2)−

(
n
t

)
(1− p)(

t
2) vertices, for which the coloring c contains no red Ks or

blue Kt.

Question 10: Let v be an eigenvector of AG with eigenvalue λ and suppose its ith coordinate
vi is the largest in absolute value (hence |vi| > 0). We know that the ith coordinate of AG · v
is λvi. On the other hand, this coordinate is equal to the product of the ith row of AG and v.



As G is d-regular, the ith row contains d entries of value 1, say at coordinates J ⊂ {1, . . . , n},
all others being 0. Then we have:

|λ||vi| = |λvi| = |(AG · v)i| = |
∑
j∈J

vj| ≤
∑
j∈J

|vj| ≤ d|vi|

Hence |λ| ≤ d, as requested.

Bonus question: To show that ex(n, Pk+1) ≥ n(k−1)
2

, we can simply consider the n/k disjoint
unions of k-cliques: it contains exactly n vertices and many paths of length k.
Showing that ex(n, Pk+1) ≤ n(k−1)

2
is equivalent to show that any graph G with |E(G)| >

n(k−1)
2

contains a path Pk+1. We prove it by induction on n. Suppose that it is true for graphs
with at most n− 1 vertices.

1. Suppose that G is connected. If for every v ∈ G we have d(v) > k−1
2
, then for any

u, v ∈ G, d(u) + d(v) > k− 1, and by the lemma from question 4 there must be a Pk+1

contained in G. Otherwise, consider the subgraph G′ by removing a vertex of G with
degree smaller or equal to k−1

2
. Then |E(G′)| > (n−1)(k−1)

2
, which by induction implies

that G′ contains Pk+1.

2. Suppose now that G is not connected. Consider its connected component H with the
largest ratio |E(H)|

|V (H)| which is strictly larger than k−1
2
, or equivalently |E(H)| > |H|(k−1)

2
.

Then by induction it implies that H contains Pk+1.


