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Solutions for the exam

Question 1: Let G be the Wagner graph:

e diameter: diam(G) = 2 (any x,y are connected by
an edge or a 2-long path);

girth: g(G) =4 (A-B-F-E is a smallest cycle);

independence number: a(G) = 3 (see figure);

chromatic number: y(G) = 3 (see figure);

G is not planar (contains a subdivision of K3); \

G is not Eulerian (all vertices have odd degrees);

e G is Hamiltonian (A-B-C-D-H-G-F-E-A is a
Hamilton cycle) A proper 3-coloring of G

Question 2: G is a connected graph, therefore it has a spanning tree 7' (Theorem 3.1). By
definition of a spanning tree, T has the same number of vertices as G, that is n > 2. Hence
T has two leaves (Lemma 2.7). Consider v € V(T') one such leaf. By definition of a leaf,
T — v is connected. Furthemore T' — v is a subgraph of G —v. Thus G — v is connected. The
leaf v € V(T') = V(G) is the vertex of G that we are looking for.

Question 3: Consider a longest such path P = vy ... vjwuy ... u;, where vy ... viw is a red
path and wuy ...u; is a blue path. We reason by contradiction and assume that P is not
Hamiltonian. Then there is a vertex z not contained in it. Consider the edge wz. If it is
red, then the path vy ... vjwzxu, ... u; satisfies the required property, and it is longer than P
(no matter if zu; is red or blue). Similarly, if wx is blue, then vy ... vizwu, ... u; is a longer
such path. Hence if P is not Hamiltonian, we can build a longer path that is the union of
two monochromatic ones, which is a contradiction.

Alternatively, one can prove this statement by induction on n, using the same idea of
looking at wz.

Question 4: Take a longest path vgvy...v, in G, which is of length /. Suppose that
¢ < k. If vy and v, are not adjacent, then by assumption d(vg) 4+ d(vy) > k. By maximality,
all neighbors of vy and v, are in the path. Let us now define two types of edges: for ¢ €
{1,...,0—1}, an edge v;v;1; is of type 1 if v;11 € N(vp) and is of type 2 if v; € N(v). Since
d(vo) + d(ve) > k > ¢, there exists an edge v;v;41 which is both of types 1 and 2. Hence
we get a cycle v;...v0v;11 ... v of length £ + 1. In the case where vy and v, are adjacent,
VU1 . . . Upvg is a cycle of length £+ 1. Now, in both cases, since the number of vertices in the
cycle is £ 41 < n, there exists a vertex u not in the cycle. By connectedness of GG, there is an
edge wv; where v;, j € {0,...,¢} is in the longest path. Then we can longer path by adding
u, which leads to a contradiction.



Question 5: Let n < 12 be the number of vertices of G. Since G is planar, the corollary of
Euler’s formula (Proposition 5.3) gives: |E(G)| < 3(n—6). Now, by the handshakes formula,
we have: >~ v g deg(v) = 2|E(G)| < 2(3n — 6) = 6n — 12 < 6n — n = 5n. Finally, by the
pigeonhole principle, this further implies that G' has a vertex of degree at most 4.

Question 6: We prove that G is the complete graph by contradiction. Assume G is not
the complete graph, then there exists two distinct vertices z,y € V(G) not connected by an
edge in G, i.e. zy € E(G). By the property of G, there exists a proper (x(G) — 2)-coloring
of G — x —y. We denote this coloring ¢ and the colors it uses {1, ..., x(G) —2}. Now, when
G — x — y is colored by ¢, the neighbors of x, which do not include y, are colored with the
set of colors {1,..., x(G) — 2}. Thus ¢ can be extended to a proper coloring including = by
assigning it the color x(G) — 1. Similarly, ¢ can be extended to y by assigning it the color
X(G)—1. Hence, we have designed a proper (x(G)—1)-coloring of G. This is a contradiction.

Question 7: Let M; and M, be two perfect matchings of a tree T'. Consider the subgraph
G of T with V(G) = V(T') and E(G) = M;AM,;. Then every vertex v € V(G) has degree
0 or 2. So the graph G is a disjoint union of isolated vertices and cycles. However, a tree is
cycle-free. Therefore every vertex in G has degree 0, which implies that M; = M.

Question 8: To apply, if possible, one iteration of the Ford-Fulkerson algorithm to the
network with the existing flow, we need to find an augmenting path, i.e. a s,t-path using
only edges with strictly positive residual capacities.

Indeed there exist two: P; = s, A, B,C,D,t and P, = s, B,C, D,t; they can be found
using BFS algorithm. Now, using P;, the maximum residual capacity among all edges is
0 = 2, for sA and CD. We can thus increase by 2 the value of the flow along P; for this
iteration. The resulting flow is shown below on the figure on the left; the associated residual
capacities are shown on the figure on the right. Note that there is no augmenting path in this
new residual graph, therefore the Ford-Fulkerson algorithm terminates. The flow obtained is
maximum, of value 10, and the associated minimum cut is {s, A, B,C}, {D, t}.

Note that if we select the path P, instead, the flow can be increased by 1 only and
another iteration is required using P;, which remains an augmenting path, for the algorimth
to terminates.

Initial residual graph and capacities
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Question 9:

()

Considering all possible edges, there are 3 different paths of length 2 among any triplet
of vertices. Now, for such path to exist in the random graph G € G(n,p), at least 2
edges among the 3 connecting any 3 vertices must exist. This happends with probability
p? because edges exist in G with independent probabilities, all equal to p. Thus, the
expected number of paths of length 2 in G is: 3(7;) P2

For each set A of s vertices, let X4 be the indicator random variable that A forms
a red clique in K, colored according to the random process. Then X = >, X, is
the random variable that counts the number of red s-cliques in this randomly colored
graph. Similarly, for each set B of t vertices, let Y be the indicator random variable
that B forms a blue clique. Then Y = )", Yp is the random variable that counts the
number of blue t-cliques. Then We have:

Bix= > Bxal= (1), ml= Y - (7)a-n0)

ACV (Ky) BCV(Ky)
|Al=s |B|=t

From question (b), we now know that the number of expected number of red s-cliques
and blue t-cliques in K, randomly 2-edge-colored is:

B +v] =B+ ) = (1)) + () a-n®

Thus there exists an edge-coloring ¢, such that the total number of red s-cliques and
blue t-cliques is at most E[X + Y|. Considering such a coloring of the edges of K,,
delete one vertex for each red s-clique and blue t-clique. We then get a complete graph

with n — (”) p(2) — (?) (1-— p)G) vertices, for which the coloring ¢ contains no red K or

s

blue Kt.

Question 10: Let v be an eigenvector of Ag with eigenvalue A and suppose its 7th coordinate
v; is the largest in absolute value (hence |v;| > 0). We know that the ith coordinate of Ag - v
is Av;. On the other hand, this coordinate is equal to the product of the ith row of Ag and v.



As G is d-regular, the ith row contains d entries of value 1, say at coordinates J C {1,...,n},
all others being 0. Then we have:

Mlvil = o] = [(Ag - 0)il = 1D vl <7 Jogl < doi]

jed jeJ
Hence || < d, as requested.

Bonus question: To show that ex(n, Pyi1) > "(k;l), we can simply consider the n/k disjoint

unions of k-cliques: it contains exactly n vertices and many paths of length k.

Showing that ex(n, Pyi1) < @ is equivalent to show that any graph G with |E(G)| >
@ contains a path Py;. We prove it by induction on n. Suppose that it is true for graphs

with at most n — 1 vertices.

1. Suppose that G is connected. If for every v € G we have d(v) > k—gl, then for any
u,v € G, d(u) +d(v) > k — 1, and by the lemma from question 4 there must be a Py,
contained in GG. Otherwise, consider the subgraph G’ by removing a vertex of G with
degree smaller or equal to % Then |E(G")| > w;k_l), which by induction implies
that G’ contains Py, 1.

2. Suppose now that G is not connected. Consider its connected component H with the

largest ratio }583‘ which is strictly larger than %31, or equivalently |E(H)| > w

Then by induction it implies that H contains Py .




