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Lecture 1

Introduction.

1.1 DEFINITIONS

Definition 1 (Graph). A graph G = (V| E) consists of a finite set V and a set E of two-
element subsets of V.. The elements of V are called vertices and the elements of E are called
edges.

For instance, very formally we can introduce a graph like this:

V =1{1,2,3,4}, E={{1,2},{3,4},{2,3},{2,4}}.

In practice we more often think of a drawing like this:

1 2

4 3

Technically, this is what is called a labelled graph, but we often omit the labels. When we
say something about an unlabelled graph like Z, we mean that the statement holds for any
labelling of the vertices.

Here are two examples of related objects that we do not consider graphs in this course:

o —

A

The first is a multigraph, which can have multiple edges and loops; the corresponding
definition would allow the edge set and the edges to be multisets. The second is a directed
graph, in which every edge has a direction; in the corresponding definition the edges would
be ordered pairs instead of two-element subsets.

Although this course is mostly not about these variants, in some cases it will be more
natural to state our results for directed or multigraphs. In any case, we will not treat infinite
graphs in this course.

Graphs (and their above-mentioned variants) are highly applicable in- and outside math-
ematics because they provide a simple way of modeling many concepts involving connec-
tions between objects. For example, graphs can model social networks (vertices=people &
edges=friendships), computer networks (computers & links), molecules (atoms & bonds) and
many other things. The aim of this course is to study graphs in the abstract sense, and to
introduce the fundamental concepts, tools, tricks and results about them.

Some notation: Given a graph G, we write V(G) for the vertex set, and E(G) for the
edge set. For an edge {x,y} € F(G), we usually write xy, and we consider yz to be the same
edge. If zy € E(G), then we say that x,y € V(G) are adjacent or connected or that they are
neighbors. If x € e, then we say that x € V(G) and e € E(G) are incident.



Definition 2 (Subgraphs). Two graphs G,G’ are isomorphic if there is a bijection ¢ :
V(G) — V(G") such that xy € E(G) if and only if o(x)p(y) € E(G'). A graph H is a
subgraph of a graph G, denoted H C G, if there is a graph H' isomorphic to H such that
V(H") C V(G) and E(H") C E(G).

With this definition we can for instance say that Nisa subgraph of /1. As mentioned
above, when we talk about graphs we often omit the labels of the vertices. A more formal way
of doing this is to define an unlabelled graph to be an isomorphism class of labelled graphs.
We will be somewhat informal about this distinction, since it rarely leads to confusion.

Definition 3 (Degree). Fiz a graph G = (V, E). For v € V, we write
Nw)={weV :ivwe E}

for the set of neighbors of v (which does not include v). Then d(v) = |N(v)| is the degree
of v. We write 6(G) for the minimum degree of a vertex in G, and A(G) for the mazximum
degree.

Definition 4 (Examples). The following are some of the most common types of graphs.

e Paths are the graphs P, of the form ...« . The graph P, hasn — 1 edges and n
different vertices; we say that P, has length n — 1.

e Cycles are the graphs C, of the form —=—. "x>. . The graph C, has n edges and n
different vertices; the length of C,, is defined to be n.

e Complete graphs (or cliques) are the graphs K, on n vertices in which all vertices are

adjacent. The graph K, has (g) edges. For instance, Ky 1s X .

e The complete bipartite graphs are the graphs Ky, with a partition V(Ky;) = X UY
with | X| = s,|Y| =t, such that every vertex of X is adjacent to every vertez of Y, and
there are no edges inside X orY. Then Ky has st edges. For example, Ky 3 is

The following are the most common properties of graphs that we will consider.

Definition 5 (Bipartite). A graph G is bipartite if there is a partition V(G) = X UY such
that every edge of G has one vertex in X and one in'Y ; we call such a partition a bipartition.

Definition 6 (Connected). A graph G is connected if for all x,y € V(G) there is a path
in G from x toy (more formally, there is a path Py, which is a subgraph of G and whose
endpoints are © and y).

A connected component of G is a mazimal connected subgraph of G (i.e., a connected
subgraph that is not contained in any larger connected subgraph). The connected components
of G form a partition of V(G).

1.2 BAsic REsuULTS

In this section we prove some basic facts about graphs. It is a somewhat arbitrary
collection of statements, but we introduce them here to get used to the terminology and to
see some typical proof techniques.

Proposition 1.1. In any graph G we have Z d(v) = 2|E(G)|.
veV(G)
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Proof. We count the number of pairs (v,e) € V(G) x E(G) such that v € e, in two different
ways. On the one hand, a vertex v is involved in d(v) such pairs, so the total number of such
pairs is Zvev(G) d(v). On the other hand, every edge is involved in two such pairs, so the
number of pairs must equal 2| E(G)]. O

What we used here is a very powerful proof technique in combinatorics, called double
counting. The lemma itself is sometimes called the “handshake lemma” because it says that
at a party the number of shaken hands is twice the number of handshakes. It has useful
corollaries, such as the fact that the number of odd-degree vertices in a graph must be even.

Next, we will describe a very important characterization of bipartite graphs. But first,
we need two more definitions.

Definition 7 (Walk). A walk is a sequence viejvses . . . vy of (not necessarily distinct) vertices
v; and edges e; such that e; = v;v;yq. A closed walk is a walk with vy = v,. The length of
this walk is the number of edges, k — 1.

It is easy to see that paths are exactly walks with no repeating vertices, and cycles are
exactly closed walks with no repeating vertices apart from v; = wvy.

Definition 8 (Distance). The distance d(u,v) of two vertices u,v € V(G) is the length of
the shortest path (or walk) in G from u to v. (If there is no u-v path in G then d(u,v) = oc.)

Now we are ready to prove the characterization. Note that “contains a cycle” means that
the graph has a subgraph that is isomorphic to some C),, and similarly for paths. An “odd
cycle” is just a cycle whose length is odd.

Theorem 1.2. A graph is bipartite if and only if it contains no odd cycle.

To prove the reciprocal of this statement, we need the result from the following lemma
that we prove using an nductive argument.

Lemma 1.3. Fvery closed walk of odd length contains an odd cycle.

Proof. We apply induction on the length k of the walk. Since there is no closed walk of
length 1, the statement is vacuously true for £ = 1. We could use this as the base case, but
it is also easy to see that the only closed walk of length 3 is the triangle (K3), which itself is
an odd cycle.

Now suppose the statement is true for every odd length < k, and let W = viejvy ... vy
be a closed walk of odd length k. Let j be the smallest index such that v; = v; for some
© < j. We have two cases. If j — ¢ is even, then deleting the j — 7 edges e;,...,e;_; from W
yields another closed walk W' C W of odd length. Applying induction on W’ then gives an
odd cycle in W’ and hence in W.

On the other hand, if j — i is odd (and it cannot be 1, so j —i > 3), then the j — i edges
€i,...,ej—1 form an odd cycle. Indeed, they form an odd walk without repeated vertices by
the choice of v;. This is what we were looking for. ]

We can now provide the full proof of the theorem:

Proof of Theorem[1.2. To prove the easy direction of the statement, the implication, suppose
that G is bipartite with bipartition V(G) = X UY, and let vy - - - vxv; be a cycle in G with,
say, v1 € X. We must have v; € X for all odd ¢ and v; € Y for all even 7. Since vy, is adjacent
to vy, it must be in Y, so k must be even and the cycle is not odd.

Now for the other direction, the reciprocal, suppose G has no odd cycles. We may assume
that G is connected. Indeed, otherwise we can apply the same argument to each connected



component G; of GG to get a bipartition X; UY; of G;. Choosing X = U;X; and Y = U,;Y; will
then give a bipartition of G.
So if v is a fixed vertex, then every other vertex u € V(G) has finite distance from v. Let

X = {u : distance of v and u is even}
Y = {u : distance of v and w is odd}.

Our aim is to prove that this is a bipartition of GG. For this, we need to check that no two
vertices in X are adjacent and no two vertices in Y are adjacent.

Suppose for contradiction that some two vertices u;,us € X are adjacent, and let e be the
edge ujue. By construction, there are paths P; from v to u; and P, from uy to v that both
have even lengths. But then joining P;, P, and the edge e gives a closed walk PjeP, of odd
length, so by Lemma [1.3] G contains an odd cycle, as well, contradiction the assumption.
(Note that PieP, is not necessarily a cycle because P; and P, might intersect!)

We can do the same to show that no two vertices uy,us € Y are adjacent: here the paths
Py, P, will both have odd lengths, so again PieP, is a closed odd walk. So X UY is indeed
a bipartition of G. ]

The proof above is a constructive argument, where we explicitly constructed the object
we were looking for (and then proved that it satisfies the required properties)

We close up with a simple but important property regarding walks. Its proof is extremal.
Proposition 1.4. Every u-v walk W contains a u-v path.

Proof. Let v1vq ... v, be a shortest u-v walk in W (more precisely, in the graph defined by
the edges of W), so u = vy and v = vx. We claim that this walk is in fact a path. Indeed,
if v; = v; for some i < j, then vivy...v;vj41 ... vy is also a u-v walk, and it is shorter (has
fewer edges), which is not possible. So the shortest walk has no repeated vertices, i.e., it is
a path. O

This fact has the useful corollaries that we can replace paths with walks in some of our
definitions:

e The distance d(u,v) is equal to the length of the shortest u-v walk.
e A graph is connected if and only if every pair of vertices u, v is connected by a walk.

The latter connectivity property is sometimes easier to check. Also, it clearly implies that
connectivity is an equivalence relation.



Lecture 2

Basic results. Trees.

2.1 MORE BASIC RESULTS

The next theorem shows that if a graph has many edges, then it must contain a long
path.

Theorem 2.1. Let k > 2 be an integer and let G be a graph on n vertices with at least
(k — 1)n edges. Then G contains a path of length k.

To prove this theorem, we use the combination of the following two lemmas, which are
interesting on their own.

First, we consider the special case when every degree of G is large.
Lemma 2.2. If the minimum degree of G is k, then G contains a path of length k.

Proof. Let vy ---v; be a maximal path in G, i.e., a path that cannot be extended. Then any
neighbor of v; must be on the path, since otherwise we could extend it. Since v; has at least
k neighbors, the set {vq,...,v;} must contain at least k elements. Hence | > k + 1, so the
path has length at least k. [

Note that in general this bound cannot be improved, because the complete graph Kj.
has minimum degree k, but its longest path has length k. An analogous statement exists for
cycles.

The next statement shows that every graph with sufficiently many edges must contain a
subgraph with large minimum degree. We give an inductive proof, although it could also be
proved using an algorithmic argument.

Lemma 2.3. Let G be graph on n vertices with at least (k — 1)n edges. Then G contains a
subgraph H with 6(H) > k.

Proof. Let k > 2, we proceed by induction on n. Note that n < 2(k — 1) is impossible
because such a graph has at most n(n —1)/2 < n(k —1) edges. Also, for n = 2k — 1 the only
graph with n(k — 1) edges is K,, = Kay_1, which has minimum degree 2k — 2, so we can take
H=G.

Now suppose n > 2k — 1. If §(G) > k, then we can take H = G. Otherwise, there
is a vertex v of degree d(v) < k — 1. Let G' = G — v be the subgraph we obtain from
G by deleting v and all the edges touching it. Then G’ has n — 1 vertices and at least
n(k—1)—(k—1)=(n—1)(k — 1) edges, so by induction, there is a subgraph H C G' C G
such that 6(H) > k. O

Proof of Theorem[2.1. We can now prove the original theorem. Let G a graph on n vertices
with at least (k — 1)n edges, with & > 2. By Lemma [2.3] G contains a subgraph H with
minimum degree at least k, and H contains a path of length & by Lemma [2.2] Therefore G
contains a path of length k£ as well. O



The following lemma can be helpful when trying to prove certain statements for general
graphs that are easier to prove for bipartite graphs. The lemma says that you don’t have to
remove more than half the edges of a graph to make it bipartite. The proof is an example of
an algorithmic proof, where we prove the existence of an object by giving an algorithm that
constructs such an object.

Proposition 2.4. Any graph G contains a bipartite subgraph H with |E(H)| > |E(G)|/2.

Proof. We prove the stronger claim that G has a bipartite subgraph H with V(H) = V(G)
and dy(v) > dg(v)/2 for all v € V(G). Starting with an arbitrary partition V(G) = X UY
(which need not be a bipartition for GG), we apply the following procedure. We refer to X
and Y as “parts”. For any v € V(G), we see if it has more edges to X or to Y7 if it has more
edges that connect it to the part it is in than it has edges to the other part, then we move it
to the other part. We repeat this until there are no more vertices v that should be moved.
There are at most |V (G)| consecutive steps in which no vertex is moved, since if none of
the vertices can be moved, then we are done. When we move a vertex from one part to the
other, we increase the number of edges between X and Y (note that a vertex may move back
and forth between X and Y, but still the total number of edges between X and Y increases
in every step). It follows that this procedure terminates, since there are only finitely many
edges in the graph. When it has terminated, every vertex in X has at least half its edges
going to Y, and similarly every vertex in Y has at least half its edges going to X. Thus the
graph H with V(H) = V(G) and E(H) = {zy € E(G) : x € X,y € Y} has the claimed
property that dy(v) > dg(v)/2 for all v € V(G). O

Our last basic result gives a connection between the number of edges and the number of
connected components in a graph.

Proposition 2.5. If a graph G has n vertices and k edges, then it has at least n — k compo-
nents.

Proof. Let us start with the empty graph and add the edges of G to it one-by-one. At the
beginning there are n vertices and no edges, so we have n components. Each added edge
touches at most 2 of the components, and joins these components if they are different (an
edge within a component does not affect any components). This means that adding an edge
decreases the number of components by at most 1. Adding k edges therefore decreases the
number of components by at most k, so after adding all k£ edges of GG, we are left with at
least n — k of them. O

Corollary 2.6. Every connected graph on n vertices has at least n — 1 edges.

2.2 TREES

Definition 9. A tree is a connected graph without cycles. A forest is a graph without cycles.
In a tree or a forest, a vertex of degree one is called a leaf.

Lemma 2.7. Fvery tree with at least two vertices has two leaves.

Proof. Consider a longest path vgv; ... v in the tree (so k > 1, since the tree has at least
two vertices). A neighbor of vy cannot be outside the path, since then the path could be
extended. But if vy were adjacent to v; for some ¢ > 1, then vy - - - v;09 would be a cycle.
So the only neighbor of vy is vy, and thus v is a leaf. The same argument shows that vy is
also a leaf. ]



Theorem 2.8. Any tree T' on n vertices has n — 1 edges.

Proof. We use induction on the number of vertices. If n = 1, then we have 0 edges. Otherwise,
by Lemma there exists a leaf v in T'. Let 7" = T — v be the graph obtained by removing
v and its only edge. Then 7" is connected, since for any x,y € V(71”) there is a path from
x to y in T, and this path cannot pass through v, so it is also a path in 7”. Since T" has no
cycles, neither does T, so T" is a tree, on n — 1 vertices. By induction 7" has n — 2 edges.
Besides |E(T")| = |E(T)| — 1 Therefore T has n — 1 edges. O

Theorem 2.9. A graph G is a tree if and only if for all u,v € V(G) there is a unique path
from u to v.

Proof. First suppose we have a graph GG in which any two vertices are connected by a unique
path. Then G is certainly connected. Moreover, if G contained a cycle vy - - - v, w1, then vyvg
and v1vs - - - v, would be two distinct paths between v; and v,. Hence G is a tree.

Suppose now that G is a tree. Let u,v € V(G). Since G is connected, there is at least
one path from u to v. Suppose there are two distinct paths P, P’ from u to v. If these paths
only intersect at u and v, we can immediately combine them into a cycle, but in general the
paths could intersect in a complicated way, so we have to be careful. The paths P and P’
could start out from u being the same; let = be the first vertex that they leave at different
edges (so their next vertices are different). Let y be the first vertex of P after z that is also
contained in P’. Then there is a cycle in GG that goes along P from z to y, and then back
along P’ from y to x. This is a contradiction, so there is a unique path from v to v in G. O






Lecture 3
BFS. Euler tours. Hamilton cycles.

3.1 BREADTH-FIRST SEARCH

Definition 10. A spanning tree of a graph G is a subgraph T C G, which is a tree with
V(T) =V(G).

Theorem 3.1. Every connected graph has a spanning tree.

To prove the theorem, we provide an algorithm called Breadth First Search (BFS) that
finds a spanning tree, the breadth first search tree, with some special properties. This
algorithm will even let us answer various natural questions, like: what is the distance between
two vertices, how many connected components exist, etc..

The algorithm starts with a vertex r that we refer to as the root of the spanning tree, and
it gradually extends the tree 1" by examining the edges of G leaving the current 7. We use
J(T) to denote this set of “leaving” edges. More precisely, given a graph G and a subgraph
H C G, we define 9(H) as the set of edges connecting vertices in H to vertices not in H:

OH)={zye EG):z€V(H),y¢ V(H)}

Additionally, for x € H and y ¢ H, we use the notation H + xy to denote the graph of
H combined with the edge zy: V(H + zy) =V (H)U {y} and E(H + xy) = E(H) U {xy}.

Input: a connected graph G = (V, E), a root r € V(G)
Output: the spanning tree T of G
1 initialize the tree, T = ({r},0), and the “leaving” edges, O(T) = {ry |y € E(G)}
2 while V(T') # V(G) do
3 for each edge xy € O(T) do
if T'+ xy has no cycle then
L L add the edge zy to the current spanning tree: T < T + zy

[SL S

(=]

update the set of “leaving” edges O(T)

Algorithm 1: Bread-First-Search (BFS)

Proof of Theorem[3.1l To prove the theorem, we will prove that the BFS algorithm provides
a spanning tree for any input connected graph G.

Termination: The for loop starting on line [3| has to terminate because it considers all
edges in O(T), a subset of E(G) which is finite. The while loop starting on line [2| terminates
when all vertices are in T'. Let us consider an iteration k of this loop; we denote using the
superscript (k) the values at the beginning of each iteration. If the condition on line {4 is
never met, it means that each edge zy € 9(T)™® is such that T®) + 2y has a cycle, while
T®) has no cycle. Therefore there are two distinct z-y paths in 7" + 2y and hence there
is a x-y path in T® . For all zy € A(T)* we thus have y € T®). Then all vertices are in
T® V(T®) = V(G), and the algorithm terminates. On the other hand, if the condition
is met, i.e. there exists zy € O(T)® such that 7™ + zy has no cycle, then the number of



vertices in T" at the end of the iteration is larger than at the beginning, because at least y
has been added: |V (T®*+Y)| > |[V(T®)]. Since the number of vertices in T is bounded by the
number of vertices in G which is finite, it cannot strictly increase indefinitely. Therefore the
condition can only be met for a finite number of iterations, then the algorithm terminates.

Correctness: Let us now prove that the algorithm actually provides a spanning tree as
output. We prove that the output subgraph T is a tree by induction on the iterations of
the while loop. At the first iteration, T' = ({r}, (), hence T is connected and acyclic, it
is therefore a tree. Let us now consider iteration & > 1 and assume that T®*) is a tree.
At iteration k, there exists an edge such that the condition on line 4| is met, otherwise the
algorithm would have stopped at the previous iteration. For each such edge zy € 9(T™®),
T®) + 2y is connected because z € T™ | and it is acyclic according to the condition in the
for loop. Therefore T™) + 2y is a tree and consequently so is T**1 at the end of iteration
k. Besides, the algorithm terminates once V(T') = V(G), hence the output tree is a spanning
tree of G.

O

The BFS algorithm not only finds a spanning tree of G but also finds a shortest path
from its root r to any other vertex.

Proposition 3.2. Let G a connected graph, then the BFS algorithm applied from root r €
V(G) gives a spanning tree T that contains an r-v path of length d(r,v) for every vertex

v e V(G).

Proof. The proof is a combination of the following two claims.

Claim 1: if d(r,v) = k, then v is added to the BFS tree T in the first k iterations of the
while loop (line [2).

We prove the claim by induction on k. If £ = 0, then » = v and the statement is trivial.
Otherwise, let d(r,v) = k > 1 and let us consider a shortest r-v path rv;...vg_jv. Then
d(r,vi_1) < k—1 because of the existence of the path rv; ... vg_1, S0 vx_1 is added during the
first k — 1 iterations. If v is also added during these iterations, then we are done. Otherwise,
in the k" iteration v,_;v € O(T). Then v is added to T' during the k' iteration (via vj_jv
or some other edge belonging to another shortest r-v path).

Claim 2: if v is added to the BFS T during the k" iteration of the while loop , then T’
contains an r-v path of length at most k.

Again, we prove the claim by induction on k. If £ = 0, then r = v and the statement is
trivial. Otherwise, suppose v is added during the k' iteration via the edge wv. Then u is
added during the (k — 1) iteration at the latest (actually, exactly then), so by induction,
T contains an r-u path of length at most £ — 1. Adding uv to this path gives an r-v walk
(actually path) of length at most k in T'. By Proposition this walk contains a r-v path,
also of length at most k.

Given these claims, we see that if d(v,r) = k, then T contains an r-v path of length at
most k. Of course there is no shorter path in GG, so this path has length exactly &, as needed.
O

Definition 11. The diameter of a graph G is the largest distance among any pairs of vertices:
diam(G) = max, yev () d(x,y). If G is disconnected, then diam(G) = +o0.

BFS algorithm has a number of applications; it provides a simple solution to perform
certain tasks on graphs. For example:
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e Find a shortest path from u to v in G: Run the algorithm with root u to get a tree 7'
The unique path from u to v in T' (which exists by Theorem is a shortest path.

e Find the connected components of G: Run the algorithm with some root r. The vertices
explored by BFS are exactly the connected component of r. If there is an unexplored
vertex 1/, run BFS again from " as a root. Repeat until all vertices are visited. This
actually gives a spanning forest of G.

e Compute diam(G): For each pair of vertices, we can find a shortest path and thus the
distance. Do this for all pairs and take the largest distance.

e Find a shortest cycle in G: For every edge uv, find a shortest path between u and v
in G — uw (if it exists), then combine this path with uv to get a cycle. This will be a
shortest cycle through uv. Compare all these cycles to find the shortest.

o Determine if G is bipartite: Determine the connected components of G. In every
component H, select a root r, and partition the vertices into X = {z € V(H) :
d(r,z) is even} and Y = {y € V(H) : d(r,y) is odd}. Then H is bipartite if and only
if X and Y have no internal edges (see the proof of Theorem , and G is bipartite if
and only if every component is bipartite.

Not all of these algorithms are the most efficient, there are all kinds of algorithms that do
these tasks faster. However they are already much better than brute force approaches that
go over all possible answers.

We should emphasize in particular, that for finding shortest paths between two vertices,
BFS is the best general algorithm. Indeed, Dijkstra’s algorithm, a variant of BF'S that works
for graphs with positive edge weights (representing, e.g. the lengths of streets) is directly
used by routing softwares.

3.2 EULER TOURS

Definition 12. A trail is a walk with no repeated edges. A tour is a closed trail, that is one
that starts and ends at the same vertez.

Reminder: multigraphs are graphs where there may be several edges connecting the same
pair of vertices or edges with endpoints at the same vertex.

Definition 13. An Euler (or Eulerian) trail in a (multi)graph G = (V, E) is a trail in G
passing through every edge (exactly once). An Euler tour is a tour in G passing through every
edge.

This notion originates from the “seven bridges of Kénigsberg” problem — the oldest prob-
lem in graph theory, originally solved by Euler in 1736 — that asked if it was possible to walk
through all the seven bridges of Konigsberg in one go without crossing any of them twice.
This question can be turned into a graph problem asking for an Euler trail. Euler solved the
problem by noticing that the existence of Euler trails is closely related to the degree parities.

Theorem 3.3 (Euler - 1736). A connected (multi)graph has an Eulerian tour if and only if
each vertex has even degree.

The proof of this theorem is based on the following simple lemma.

Lemma 3.4. In a graph where all vertices have even degree, every maximal trail is a closed
trail.

11



(C)

(b) Graph modeling of the problem: each
(a) Representation of Konigsberg old town. vertex is a part of the town, each edge is a
The seven bridges are highlighted in green. bridge.

Figure 1: The seven bridges of Konigsberg problem

Proof. Let T be a maximal trail. If T is not closed, then 7" has an odd number of edges
incident to the final vertex v. However, as v has even degree, there is an edge touching v
that is not contained in 7'. This edge can be used to extend 7" to a longer trail, contradicting
the maximality of T ]

Proof of Theorem[3.3. To see that the condition is necessary, suppose G has an Eulerian tour
C. If a vertex v was visited k times in the tour C, then each visit used 2 edges incident to v
(one incoming edge and one outgoing edge). Thus, d(v) = 2k, which is even.

To see that the condition is sufficient, let G be a connected graph with even degrees. Let
T = ejey...ep, where e; = (v;_1,v;) be a longest trail in G, then it is maximal. According
to Lemma [3.4] T is closed, which means vy = vy. G is connected, so if T' does not include
all the edges of G then there is an edge e outside of T that touches it, i.e. e = uw; for some
vertex v; in T, with u € V(G). Since T is closed, we can start walking through it at any
vertex. But if we start at v; then we can append the edge e at the end. More precisely
T = e€;41...€169...¢eis a trail in G which is longer than T'. It is a contradiction to the
fact that T is a longest trail in G. Thus, T must include all the edges of G and so it is an
Eulerian tour. O]

Corollary 3.5. A connected (multi)graph G has an Euler trail if and only if it has either 0
or 2 vertices of odd degree.

Proof. Suppose T' is an Euler trail from vertex u to vertex v. If w = v then T is an Eulerian
tour and so by Theorem [3.3] it follows that all the vertices in G have even degree. If u # v
then let us add a new edge e = uv to G. In this new graph G U {e}, T'U {e} is an Euler
tour. By Theorem [3.3| we see that all the degrees in G U {e} are even. This means that in
the original graph G, the vertices u,v are the only ones that have odd degree.

Now we prove the other direction of the corollary. If G has no vertices of odd degree then
by Theorem it contains an Eulerian tour which is also an Eulerian trail. Suppose now
that G has 2 vertices u, v of odd degree. Then add a new edge e to G. Now all vertices of
the resulting graph G'U{e} have even degree, so, by Theorem it has an Eulerian tour C.
Removing the edge e from C' gives an Eulerian trail of G' from u to v. ]
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3.3 HAMILTON CYCLES

Euler trails are walks that use each edge exactly once. But what if we want to use each
verter exactly once?

Definition 14. A Hamilton (or Hamiltonian) cycle in a graph G is a cycle that contains all
vertices of G. A Hamilton path in a graph G is a path that contains all vertices of G. A
graph G is Hamiltonian if it contains a Hamilton cycle.

Figure 2: A Hamilton cycle on the graph representing the corners and edges of a cube.

Although the proof of Theorem is not really described in an algorithmic way, it can
actually be turned into an efficient algorithm. However, no “good” algorithm is known that
would find a Hamilton cycle in a graph.

Definition 15. The girth of a graph G is the length of the shortest cycle contained in G.
The circumference is the length of the longest cycle contained in G.

For example, the complete graph K, for n > 3 has girth 3 and circumference n.

We have seen that computing the girth of a graph can be done using BFS. But finding
the circumference is even more difficult than deciding if a graph is Hamiltonian, because a
graph has a Hamilton cycle if and only if its circumference is n.

Another related problem is to find a shortest Hamilton cycle in a graph with weighted
edges; this is called the travelling salesman problem (TSP) and is one of the most famous
computationally hard problems, with many real-life applications.

Although we have no general algorithm or recipe for finding Hamilton cycles, we can still
prove some theorems that are useful in certain situations. Our first example is a necessary
condition for Hamiltonicity.

Given a graph G and a set S C V(G) of vertices, we write G — S for the graph obtained
by removing the vertices of S from G, along with all the edges touching the vertices in S.

Lemma 3.6. If G has a Hamilton cycle, then for all S C V(G), G — S has at most |S|
connected components.

Proof. The Hamilton cycle must visit all the components of G — S (viewed as subgraphs of
G), and to get from one component to another the cycle must pass through a vertex of S.
Thus every component is connected to S by two edges of the cycle (and possibly by other
edges not in the cycle). Since every vertex is incident to two edges of the cycle, we have that
twice the number of components is at most twice the number of vertices of S. O]

This lemma can be useful to show that a graph does not have a Hamilton cycle. For
example, consider the graph G presented Figure [3al and select S as the set of two vertices in
the middle and their connecting edge. Then G — S has three connected components, so by
Lemma the graph has no Hamilton cycle.

13



(a) The condition is not met, hence the graph (b) The condition is met but the graph is not
is not Hamiltonian Hamiltonian

Figure 3: Illustration of the result of Lemma

On the other hand, it is important to emphasize that the condition in Lemma is not
sufficient. For example, one can check that the graph G on Figure [3b] satisfies the condition
that for all S C V(G), G — S has at most |S| components, yet it has no Hamilton cycle. To
see the latter, observe that for each vertex of degree 2, both incident edges would need to
be in the cycle; but then the middle vertex would be incident to at least three edges of the
cycle, which is impossible.

14



Lecture 4

Hamilton cycles.

In this chapter, we are interested in stating sufficient conditions for Hamiltonicity. His-
torically several approaches have been used to tackle the problem.

4.1 NUMBER OF EDGES AND MINIMUM DEGREE

A natural idea that comes to mind is that a graph with many edges must have a Hamilton
cycle. Unfortunately, there is no chance to get a very good bound on the number of edges
sufficient to guarantee a Hamilton cycle, because there exist “almost complete” graphs that
are not Hamiltonian. Still, the following result holds.

Theorem 4.1. If G is an n-vertex graph with |E(G)| > (",') + 1 edges, then G contains a
Hamilton cycle.

Proof. We apply induction on n. The statement is clearly true for n = 1,2, 3, so we assume
n > 3.

We claim that G has a vertex v of degree at least n — 2. Indeed, otherwise every vertex
has degree at most n — 3, so:

Yoevi M) _n(n-3) _ (n-1(n-2) (n-1
2 =T ° 2 B ( 2 )
This contradicts our assumption.
Now let G’ = G — v, so G’ has n — 1 vertices. We distinguish the two cases d(v) =n — 2
and d(v) =n — 1.
Case 1: suppose that d(v) =n — 2. Then:

|E(G)] = |E(G)| — (n—2) > (”;1>+1_(n—2): (”;2>+1

Hence G’ has a Hamilton cycle C by induction. Since d(v) = n — 2 and n > 3, v must be
adjacent to two consecutive vertices of this cycle, x and y. Then we can remove the edge zy
from C and replace it by zv and vy to get a Hamilton cycle in G.

Case 2: now suppose d(v) = n — 1. In this case we only have |E(G")| > ("7, so we
cannot apply induction right away. If G’ is complete, then G’ has a Hamilton cycle, and we
can add v as in the previous case (in fact, as d(v) = n — 1, v is now adjacent to every vertex
of the cycle).

Otherwise, there is an edge xy missing from G’. Let us look at the graph G’ + zy that
we get by adding zy to G'. Now this graph has more than (n;2) + 1 edges, so we can apply
induction to find a Hamilton cycle C in it. If C does not contain xy, then we can again add v
as in the previous case. If C does contain xy, then replacing xy with the path zvy in C gives
a Hamilton cycle in G. n

[E(G)] =

As mentioned before, the condition in the theorem above is somewhat weak in the sense
that many graphs that have a Hamilton cycle do not satisfy the condition.

The following sufficient condition does better by looking at the minimum degree instead
of the total number of edges. Note that we have previously seen that every graph G has a
cycle of length at least §(G) 4+ 1. The following theorem says that something much stronger
is true when the minimum degree is at least |V (G)|/2.
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Theorem 4.2 (Dirac - 1952). Let G be a graph on n > 3 wvertices. If 6(G) > %, then G
contains a Hamilton cycle.

Proof. First observe that G must be connected, because each component contains at least
d(G) 4+ 1 > n/2 vertices, so G cannot have more than one component.

Consider a longest path P = vivy...v; in G. By maximality, all neighbors of v; and vy
are in the path. Let us say that an edge v;v;1; is type-1 if v;41 € N(vy), and let us say that
it is type-2 if v; € N(vg). As §(G) > n/2, we have at least n/2 type-1 and n/2 type-2 edges
in P. But P has at most n — 1 edges, so some edge v;v;41 is both type-1 and type-2, i.e.,
v1v;41 and v;vy are edges of G. Then C = P — 0011 + 010j41 + VU = Vj ... V1Vj41 - . . VgV;
is a cycle.

In fact, C is a Hamilton cycle. Indeed, suppose not all vertices are contained in C. Since
G is connected, there must be an edge uv; where u € C. Then there is a path that goes from
u to v; and then all around the cycle C to a neighbor of v;. This path contains £+ 1 vertices,
contradicting the maximality of P. O

This theorem is again best possible, in the sense that a weaker bound on the minimum
degree would not imply a Hamilton cycle.

It is easy to check that the proof of Dirac’s theorem works for the following strengthening,
as well:

Theorem 4.3 (Ore - 1960). Let G be a graph on n > 3 vertices. If d(u) + d(v) > n for any
non-adjacent vertices u and v, then G contains a Hamilton cycle.

Using this theorem, one can also obtain a short proof of Theorem [4.1], so one can think
of Ore’s theorem as a common generalization of Theorems [4.1] and [4.2]

4.2 CLOSURE AND DEGREE SEQUENCE

We can observe that it is possible to modify the proof of Dirac’s theorem to yield a
stronger sufficient condition. The basis of the approach is the following lemma.

Lemma 4.4. Let G a graph with n vertices and u,v two non-adjacent vertices in G such
that d(u) + d(v) > n. Then G is Hamiltonian if and only if G + uv is Hamiltonian.

Proof. If G is Hamiltonian, then obviously so is G + uv. Let us prove the other implication
by contradiction and assume that G + wv is Hamiltonian but G is not. Then there exists a
Hamilton cycle in G +uv and therefore a Hamilton path P in G from v to v. Similarly to the
proof of Theorem we define F; and F» the sets of respectively type-1 and type-2 edges.

Since P contains n — 1 edges, |E1 U Es| < n. Furthemore we have E; N Ey = (), otherwise
we could define a Hamilton cycle in G similarly to the proof of Theorem [4.2] which is not
possible because G is assumed to be non-Hamiltonian.

Besides, by maximality of the Hamilton path in G, all neighbors of v and v are on P.
Therefore d(u) +d(v) = |Ey|+|Es| = |E1U Es|+|Ey N Ey| < n, which contradicts the original
assumption on G. O

Now this lemma motivates the definition of the closure of a graph.

Definition 16. The closure of a graph G is the graph obtained from G by recursively joining
pairs of non-adjacent vertices whose degree sum is at least |V (G)| until no such pair remains.

The closure of G is denoted ¢(G).
Lemma 4.5. The closure ¢(G) of a graph G is well defined.
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Proof. We have to prove that the operation “take the closure of”, ¢(-), is a well defined
function, i.e. for a given input graph G it yields the same output graph ¢(G) regardless in
which order edges are added to GG to form its closure.

Let G and G® two distinct graphs obtained from a graph G with n vertices by applying
the closure procedure. We will prove that F(GM) = E(G®). We denote egl), cee e,gl) and

652), e ,ef) the sequences of edges added to G to obtain G and G® respectively. Let us

assume that there exists ‘9@('21 = uv defined as the first edge in the sequence egl), o ,e,(cl) that
is not in G,

We define H = G + {egl), . .,e(l)}. Then from the definition of G it follows that
dir(u) + dgr(v) > n. Now H is a subgraph of G? and egr)l ¢ E(G?). Therefore dge (u) +
dae(v) > n. It is a contradiction because u and v are not adjacent in G® and should
therefore have been added during the procedure.

Hence E(GW) c E(G®). The inclusion in the other direction can be proven similarly.
Therefore GV = G and thus ¢(G) is well defined. O

Using the observation from Lemma the following theorem from Bondy and Chvatal
establishes the equivalence of the Hamiltonicity between a graph and its closure.

Theorem 4.6 (Bondy, Chvétal - 1974). A graph G is Hamiltonian if and only if its closure
c(G) is Hamiltonian.

Proof. The theorem is proved directly by induction using Lemma [

Corollary 4.7. Let G be a graph on n > 3 vertices. If ¢(G) is complete, then G is Hamilto-
nian.

The theorem from Bondy and Chvatal has many interesting consequences. In particular,
it can be used to derived various sufficient conditions of Hamiltonicity expressed in terms of
the degree sequence of the vertices. One example is the following theorem by Chvatal.

Theorem 4.8 (Chvétal - 1972). Let G be a graph on n > 3 wvertices such that the degree
sequence of its vertices is dy < dy < -+ < dp. If forall1 <k <G, dy <k=d, >n—k,
then G is Hamiltonian.

4.3 INDEPENDENT SETS AND CONNECTIVITY

Another approach to the characterization of Hamiltonian graphs is to try link it to global
properties of the graph, in particular its independence number and its vertexr connectivity.

Definition 17 (Independent/stable set). Let G be a graph. A wvertex set I C V(G) is said
to be independent in G if no two vertices of I are connected by an edge of G. I is called
an independent set or a stable. The independence number «(G) is the size of a largest
independent set in G.

Examples
e for the clique on n vertices, the largest independent set is a single vertex: «(K,) = 1;

e the largest independent set of the fully connected bipartite graph K, ,, is the largest of
its two parts: a(K,,,,) = max(n,m);

e the largest independent set of the empty graph on n vertices is itself: a(G) = n.
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Theorem 4.9. Let G be a graph on n > 3 vertices. If G has at least «(G) vertices of degree
n — 1, then it contains a Hamilton cycle.

Proof. Let k = a(G), and let us take a longest cycle C in G. We will prove that C is a Hamilton
cycle. So suppose that C is not Hamiltonian, and let w be any vertex not contained in the
cycle. Then w is not adjacent to both of any two consecutive vertices x,y in C. Indeed,
otherwise we could replace the edge zy in C with the path zwy to get a longer cycle (see
Figure . In particular, this observation means that every vertex of degree n — 1 is in the
cycle, and no two of them are adjacent in C.

So let vq,...,vx € C be k of the vertices of degree n — 1, and for each ¢ = 1,...,k, let
u; be the vertex immediately following v; on C in the clockwise direction. The observation
above implies that no wu; is a neighbor of w, in particular, the u; are all different from the v;.

Now the set {w,uq,...,ux} has size k +1 > «(G), so by assumption, it cannot be
independent. G therefore contains an edge w;u;. But then we can remove the edges v;u; and
vju; from C and replace them by the edges u;u;, v;w and wv; (see Figure . Again, we get
a longer cycle, and this contradiction shows that C must contain all vertices of G. ]

x (%

(a) (b)

Definition 18 (Connectivity). A graph G on n wvertices is said to be k-connected, for k < n,
if there exists no subset of k — 1 wvertices which removal disconnects G. The connectivity of
G, denoted k(G), is the largest k such that G is k-connected.

Loosely speaking, saying that a graph G is k-connected means that we need to remove
at least k vertices from it to create a disconnected subgraph. We do not go into further
details about connectivity here because it is an important topic in itself that will be covered
in a future lecture. However, we can mention this important theorem stating a sufficient
condition of Hamiltonicity in terms of the independence number and connectivity of a graph.

Theorem 4.10 (Chvatal, Erdés - 1972). Let G be a graph on n > 3 wvertices. If G is
k-connected with a(G) < k, in particular if o(G) < k(G), then G is Hamiltonian.

Proof. The proof of this theorem is very similar to the previous one but require the use of
Menger’s theorem that we will cover later.

Let us consider C a longest cycle in a k-connected graph G on n > 3 vertices and assume
that a(G) < k. We will prove that C is a Hamilton cycle by contradiction. Now suppose
that C is not a Hamilton cycle, then there exists w € V not contained in the cycle.

Since G is k-connected, by Menger’s theorem there exist k pairwise edge-disjoint paths
starting at w and terminating in C which share with C only their terminal vertices denoted

v1,...,V;. We define the set of vertices uq, ..., u, such that each u; is the direct successor
of v; on C considered in a specified ordering. Then the remainder of the proof is identical to
Theorem u
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4.4 COVERING THE VERTICES WITH MULTIPLE PATHS

Not every graph has a Hamilton path. For example, if G has k components, then we
surely need at least k paths to visit all the vertices of GG, and even that is not necessarily
possible. The next result shows that a(G) paths are always enough to cover all vertices of G

Theorem 4.11. Fvery graph G contains a set of at most a(G) wvertex-disjoint paths (i.e.
paths that share no vertex in common) that together contain all vertices of G.

Proof. We proceed by induction on «(G). If a(G) = 1 then G is a complete graph, so it has
a Hamilton path. So suppose a(G) > 1, and let P = v ... v be a maximal path in G. Our
plan is to delete this path and its vertices from G and apply the induction hypothesis to the
remaining graph G’ = G — {vy, ..., v}

For this we just need to observe that a(G’) < a(G). Indeed, let X be an independent set
in G’ of size a(G"). As P is maximal, all neighbors of v; are in P, so in particular, v; is not
adjacent to any vertex of G’. But then X U{v;} is an independent set of size a(G’) +1 in G.

Hence we can apply induction to G’, and get a set of at most «(G’) disjoint paths that
cover all vertices of G'. Together with P, this gives a collection of at most «(G) disjoint
paths that cover all vertices of G. O
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Lecture 5
Planar graphs.

5.1 DRAWINGS OF GRAPHS

We have so far only considered abstract graphs, although we often used pictures to il-
lustrate the graph. In this lecture, we prove some facts about pictures of graphs and their
properties. To set this on a firm footing, we give a formal definition of what we mean by
“picture”, although in most of the lecture we will be less formal.

Definition 19. A drawing of a graph G consists of an injective map f : V(G) — R?, and
a curve v, (the image of an injective continuous map [0,1] — R?) from x to y for every
xy € E(G), such that f(z) & vy for any vertex z # x,y. A drawing is planar if the curves
Yay do not intersect each other except possibly at endpoints.

Definition 20. A graph is planar if it has a planar drawing.

To show that a graph is planar, we only have to supply a planar drawing. For example,
the graphs K, and Kj3 are planar graphs. It is often a little harder to show that a graph is
not planar.

Figure 5: Drawing of K, Figure 6: Drawing of Kj 3

Proposition 5.1. The graph Kjs is not planar.

Informal proof. The graph contains a K3, which can basically be drawn in only one way. If
in a drawing the fourth vertex is inside this K3 and the fifth is outside, then the edge between
them must cross the K3, which means that the drawing is not planar. If both vertices are
inside the K3, then the three edges of one vertex divide the inside of K3 into three regions.
The other vertex must then be in one of these regions, and one vertex of K3 is outside this
region, so again, the edge between these two vertices crosses the boundary of the region. A
similar argument applies when both vertices are outside the K. O

Note that this proof heavily relied on the fact that an edge connecting a vertex inside of
K3 (or any other cycle) to a vertex outside must cross the K3 (or cycle). This is a highly non-
trivial statement that depends on a strong topological theorem called the Jordan Curve
Theorem, that states that every non-self-intersecting closed curve in R? divides R? into an
imstde and an outside, and any path between a point inside and a point outside must pass
through the closed curve. We remark that this theorem is specific to the plane: it is not
always true in some other surfaces, for example, on a torus.
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The Jordan Curve Theorem is well beyond the scope of this course. To avoid using such
heavy machinery, we could replace continuous curves with polygonal paths in the definition
of drawings, where a polygonal path is a special curve, whose image is a union of finitely
many segments. The Jordan Curve Theorem is much easier to prove for such paths.

Nevertheless, many technicalities arise when adding edges to drawings, even if we use
polygonal paths, but we are going to ignore these for clarity. Therefore, our proofs concern-
ing planarity will sometimes appeal to intuition, hence they will not always be completely
rigorous.

5.2 EULER’S FORMULA

One important property that distinguishes planar drawings from general graph drawings
is that plane drawings have faces.

Definition 21. The faces of a planar drawing D of a graph G are the maximal connected
regions of R*\ D. It is a set of open subsets of R? denoted Fp(G).

Since D is bounded, it has exactly one unbounded face called the outer face; all other
faces are the inner faces. We think of the boundary of a face as the closed walk around it. If
an edge only bounds one face, then it appears in the boundary walk twice. We can observe
that if the graph is disconnected, then the boundary of some faces will not be one closed
walk, but a union of closed walks.

Note that the faces of a drawing are usually not determined by the graph, i.e. different
drawings might have different boundary walks. However, the following theorem shows that
the number of faces is always the same.

Theorem 5.2 (“Euler’s formula”, Euler - 1752). Let D be a plane drawing of a connected
planar graph with n vertices, e edges and f faces. Then:

n—e+ f=2.

Proof. We use induction on e. Since the graph is connected, we have e > n — 1, so we can
start with the base case e = n — 1. In that case, G contains no cycles (it is a tree), so any
planar drawing has only one face and we have f = 1. Then: n—e+f=n—(n—1)+1=2.

Now suppose e > n. Then G contains a cycle C. Let zy be an edge of this cycle. The
graph G'\ xy is connected, and erasing this edge from D gives a planar drawing D" of G — e
with n’ vertices, ¢ edges and f’ faces. Clearly, '’ =n and ¢/ = e — 1.

Moreover, by the Jordan Curve Theorem, there is no face both inside and outside C, so
xy is on the boundary of two different faces. Removing xy merges these two faces, and does
not affect any other faces, so f' = f — 1. Now applying the induction assumption to D’, we
get: n—e+f=n—(e—1)+(f-1)=n"—€+f =2 O

As we mentioned before, this means that the number of faces is the same in any plane
drawing of a connected planar graph, namely f = 2+ e — n. Euler’s formula allows to prove
many properties about planar graphs. In particular one important consequence is that a
planar graph cannot be too dense.

Proposition 5.3. Fvery planar graph G on n > 3 vertices has at most 3n — 6 edges.

Proof. We may assume that GG is connected: otherwise we repeatedly add edges between
different components. This does not change planarity, so if the bound holds for this graph,
it will also hold for the original with fewer edges.
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Now in a drawing of a connected graph, every face F' is bounded by a closed walk; let
(r be the length of this walk. As we have observed before, each edge of G is either on the
boundary of two faces, or it appears twice in the boundary walk of the one face. Either way,
each edge is counted twice in the sum of the /. On the other hand, we have ¢z > 3 for every
face F' because G is connected on at least 3 vertices. Hence:

3f< ) lp=2e

F face

G is connected, so we can apply Euler’s formula. Together with the inequality f < 2e/3,

itgives2=n—e+ f<n—e+ % =n — . which rearranges to e < 3n — 6, as needed. [

Proposition 5.4. Let G be a planar graph on n > 3 vertices without triangle, then it has at
most 2n — 4 edges. It is the case in particular for bipartite graphs.

Proof. Since G does not contain any triangle, the length of a closed walk boundary of face
F'is such that £p > 4. Therefore, using a similar argument as in the previous proof, we have
4f < Z {r = 2e. Using Euler’s formula, we thus have 2=n —e+ f<n—e+ 5 =n—

F face
which yields the expected inequality: e < 2n — 4.

£
2

O

Proposition 5.5. If G is planar, then it has a vertex of degree at most five.

Proof. Suppose not. Then every vertex has degree at least 6, so the number of edges in G is
at least e = £ > d(v) > 3n. Now according to the reasoning in the proof of Proposition ,
we have f < 2e/3. Pluging those inequalities into Euler’s formula yields: 2 =n —e+ f <

s—e+ % = 0, which is a contradiction. O

Those results gives us easy to check necessary conditions for a graph to be planar, for
example we now have a much simpler proof of Proposition

Corollary 5.6. K5 and K33 are not planar.
Proof.

e K5 has 5 vertices and 10 edges, but 10 > 3 -5 — 6 = 9, so it cannot be planar by
application of Proposition

e Similarly, K33 is bipartite, with 6 vertices and 9 edges, but 9 > 2.6 —4 = 8, so
Proposition shows it is not planar.

O

If a graph H is a subgraph of a graph G and H is not planar, then G is also not planar,
since a planar drawing of G would give a planar drawing of H. A stronger version of this
observation can be stated using graph subdivisions.

Definition 22. The graph H is a subdivision of graph G if it can be obtained from G by
repeatedly replacing an edge xy € E(G) by a path xzy for some new vertex z. Informally, we
simply place the new vertex z somewhere on top of the edge xy, subdividing it into two edges
xz and zy.

It is easy to see that a subdividion of G is planar if and only if G is planar because the
new vertices do not have any effect on whether ot not we can draw the graph without crossing
edges. So if a graph contains a subdivision of K5 or K33, then it is not planar. Amazingly,
the converse is also true. If the graph is not planar, then it contains a K5 or K3 3-subdivision.
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Theorem 5.7 (Kuratowski - 1930). A graph is planar if and only if it does not contain a
subdivision of K5 or Ks3.

So in some sense K5- and K3 s-subdivisions are the only “obstructions” for planarity. Note
that it states an equivalence between a topological statement (the graph having a planar
drawing) and a combinatorial statement (the graph not containing a certain subdivision).

5.3 COLORING PLANAR GRAPHS

In 1852, Francis Guthrie asked the following question: “How many colors are needed to
paint the countries of a political map so that adjacent countries get different colors?” He
conjectured that four colors are always enough.

This problem can be modeled as the coloring of a planar graph if we place a vertex inside

each country and connect two vertices by an edge if the associated countries have a common
border.

Definition 23. A proper vertex coloring of a graph G is a map ¢ : V(G) — X for some set
of colors X, such that ¢(u) # c(v) whenever wv € E(G). The chromatic number x(G) is the
minimum size of such a set X, i.e. it is the minimum number of colors that the vertices of
G can be properly colored with.

Guthrie’s conjecture can then be stated in terms of the chromatic number of planar
graphs. After many failed and partially successful attempts, the conjecture was proved 120
years later by Appel and Haken.

Theorem 5.8. For every planar graph G, x(G) < 6.

Proof. We proceed by induction on the number of vertices n. For n < 6, there is nothing to
do, we can always color the vertices with different colors. Let n > 7.

According to Proposition there exists a vertex v € V(G) degree at most 5. Then
by induction, G — v can be (properly) 6-colored. In this coloring, the neighbors of v use at
most 5 colors, so we can extend this to a 6-coloring of G by giving v a color not used by its
neighbors. ]

Theorem 5.9 (“Five color theorem”, Heawood - 1890). If G is planar, then x(G) < 5.

Proof. We use induction on the number of vertices n. As before, n < 5 is clear. By Propo-
sition , there is a vertex v € V(G) of degree at most five, so by induction, we can color
G — v with five colors. If this coloring uses at most four colors on N(v), then we can color v
with the fifth color and we are done.

Now assume that v has five neighbors and all have different colors in the G — v coloring.
We label v neighbors z1, ..., x5 according to the clockwise order of the edges vxq,...,vxs;
leaving v. We also label the colors i € {1,...,5} such that each x; has color 7. Now consider
a planar drawing of G. We call a path in G an (i, j)-path if all its vertices have color i or j.

Suppose that there is no (1, 3)-path from z; to z3. Let R be the set of vertices that are
reachable from x; by a (1,3)-path. By assumption, x5 is not in R. Then we can swap the
colors 1 and 3 among the vertices in R: it gives a proper coloring of G — v, and it makes
both x; and x3 colored with 3. Then coloring v with 1 gives a 5-coloring of G.

Now suppose that there is a (1, 3)-path from x; to x3. Together with v this path forms a
cycle C, all of whose vertices are colored with 1 or 3 (or uncolored in the case of v). Let S
be the set of vertices reachable by (2,4)-paths from x5. Then the cycle C separates S from
x4 (here we use the Jordan Curve Theorem), so x4 is not in S. Thus we can swap colors 2
and 4 in S, and then color v with 2. ]
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The (i, 7)-paths used in this proof are called Kempe chains, named after Alfred Kempe
who proposed a proof of Guthrie’s conjecture in 1879. Although his proof was erroneous,
the chain structures that he introduced were necessary for Heawood to prove his “five color
theorem”.

The conjecture is finally confirmed in 1976 by the famous “four colors theorem”. The
bound of four colors is of course optimal since K, is a planar graph.

Theorem 5.10 (“Four color theorem”, Appel, Haken - 1976). For every planar G, x(G) < 4.

The proof of this theorem required heavy computer assistance. Even today, there is no
proof known for this theorem that would be feasible by hand (the simplest proofs still involve
checking over 600 cases).

For specific families of planar graphs, four colors are not even necessary. In particular
three colors are enough for graphs without triangles.

Theorem 5.11 (Grotschz - 1959). Let G be a planar graph onn > 3 vertices without triangle,
then x(G) < 3.

Theorem 5.12 (Aksionov - 1974). Let G be a planar graph on n > 3 wvertices such that G
contains at most three triangles, then x(G) < 3.
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Lecture 6

Coloring.

6.1 VERTEX COLORING

Recall the we call a graph (properly) k-colorable if its vertices can be colored with k
colors in such a way that no two adjacent vertices get the same color, and that the chromatic
number x(G) is the minimum k such that G is k-colorable.

So far we have looked at the chromatic number of planar graphs, but it also makes sense
to study the concept for general graphs. Actually, many problems can be interpreted as
graph coloring problems, such as assignment or scheduling problems.

Example: The students at a certain university have annual examinations in all the courses
they take. Naturally, examinations in different courses cannot be held concurrently if the
courses have students in common. How can all the examinations be organized in as few
parallel sessions as possible? To find a schedule, consider the graph G whose vertex set is the
set of all courses, two courses being joined by an edge if they give rise to a conflict. Clearly,
independent sets of G correspond to conflict-free groups of courses. Thus, the required
minimum number of parallel sessions is the chromatic number of G.

Definition 24. The complement of a graph G is the graph G with vertez set V(G) = V(G)

and edge set E(G) = {xy : z,y € V(G),ry € E(G)}. The clique number w(G) is the size of
the largest complete subgraph (clique) of G. So w(G) = a(G).
Proposition 6.1. Below is a list of basic properties about the chromatic number.
1. x(K5) =s
2. G is bipartite if and only if x(G) <2
3. If H is a subgraph of G, then x(H) < x(G)
4. X(G) > w(G) for every graph G.
Proof. e 1. and 2. The properties follow from the definition.

e 3. We simply need to notice that every proper coloring of GG provides a coloring of H.

e 4. It can be proven by a combination of properties 1. and 3.
O

So w(@G) is a trivial lower bound on the chromatic number, but it is not necessarily tight.
Indeed, the following graph G satisfies x(G) = 4 and w(G) = 3.

As a follow up question, we can wonder if large cliques are somehow a necessary conditions
of graph with large chromatic number. It turns out that it is not: in general, the chromatic
number cannot be bounded by any function of the clique number. The first result in this
direction is the following theorem for graphs without triangle.
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Theorem 6.2 (Zykov - 1949). For every positive integer k, there exists a graph G with
w(G) =2 and x(G) > k.

Proof. We prove this by induction on k. For k = 2, we can take G2 be a single edge.

Now suppose that &k > 3. Let Hy,..., H,_1 be k — 1 disjoint copies of Gy_;. For every
(v1,...,05_1) € V(Hy) X -+ X V(Hg_1), add a vertex X(vq,...,vx_1) that is only connected
to vy, ...,vx_1. Define G}, as the resulting graph.

Then w(Gy) = 2. Indeed the subgraphs Hy, ..., Hi_; do not contain a triangle, so if there
exists a triangle in Gy, then one of its vertices is X (vq,...,vx_1) for some (vq,...,v6_1) €
Hy x -+ x Hj_;. But for i # j, v; and v; are not neighbors. Thus X (v1,...,v,_1) cannot be
contained in a triangle either.

Now we show that x(Gx) > k. Let ¢ : V(Gr) — {1,...,¢} be a proper (-coloring of
Gy. Since c restricted to each H;, i € {1,...,k — 1} is also a proper {-coloring, by the

induction assumption ¢ > k — 1. Furthermore there exist v; € Hy,...,v,_1 € Hp_1 which
are colored with exactly £ — 1 different colors in ¢. Now those vertices are the neighbors of
vertex X (v, ...,vx_1) in Gy. Therefore X (vy,...,vx_1) is colored in ¢ with a k' color, and
thus ¢ > k.

]

Other graphs can be constructed that achieve arbitrary large chromatic number while
maintaining the triangle free property.

Shift graphs: Let n > 2. The shift graph S,,» is the graph with vertex set {(i,7) : 1
i < j < n}, where (i,j) and (k,l) are joined by an edge if j = k. Then for all & >
X(Sn2) > k while w(S,2) = 2.

Mycielsky graphs: For a graph G on n vertices vy, ..., v,, the Mycielskian of GG is denoted
u(G). It contains G as a subgraph and n + 1 additional vertices uq, ..., u, and w. All the
w;, © € {1,...,n} are connected to w and for all v;v; € E(G), u(G) contains the edges u;v;
and v;u;. Some important properties of the Mycielskian are: (i) if G is triangle free, so is
n(G); (i) x(1(G)) = x(G) + 1.

The Mycielsky graphs are a sequence of graphs defined by: M; = K, (one edge graph)
and for k > 2, My = u(My_1). Then for all k > 2, x(My) = k while w(M}) = 2.

A generalization of Theorem was provided by Erdos. The following theorem states
that even graphs containing only large cycles (which can be thought as the “opposite” of
cliques) can have a large chromatic number.

<
2,

Theorem 6.3 (Erdos - 1959). For every positive integers k and g, there exists a graph of
girth larger that g and such that x(G) > k.

Now we investigate another direction for bounding the chromatic number of a graph in
terms of its largest independent set and largest degree. A k-coloring of a graph can be thought
as the splitting of its vertices into k independent sets. This readily implies the following lower

bound on x(G).

Proposition 6.4. For every graph G, we have x(G) > ‘Z(G)‘

Proof. Given a proper coloring with x(G) colors, the color classes, labelled Vi, ..., V,(q), are
independent sets, and thus have size at most a(G). Hence we have:

x(G) x(G)

VG =2 Vi< alG) = x(G)a(G)

=1
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Proposition 6.5. For any two graphs G1 and Gy on the same set of vertices V, x(G1UGs) <
X(G1)x(G2), where the set of edges of the graphs union is simply defined by E(G; U Gs) =
E(G1) U E(G3).

Proof. Denote k; = x(G;) for i = 1,2 and let us consider ¢; : V' — {1,...,k;} a proper k;-
coloring of G;. We can color the vertices in V' with elements of the set {1,..., k1 } x{1,... , ka}.
Indeed, c¢(v) = (c1(v),c2(v)) gives a proper kiko-coloring of G = G U Go, because if two
vertices u, v are adjacent in G, then they are also adjacent in some G, hence the i*" coordinate
of their colors will differ. So x(G) < kiks. O

Definition 25. Let G = (V, E) a graph. We say that G is k-degenerate if every subgraph of
G has a vertex of degree less than or equal to k.

The following proposition connects the degeneracy of G and the chromatic number of G.
The six color theorem for planar graphs is in fact a special case of it.

Theorem 6.6 (Halin - 1967). If G is k-degenerate, then x(G) < k + 1.

Proof. We proceed by induction on the number of vertices. The statement is clearly true for
all G with at most k + 1 vertices. For larger graphs, pick a vertex v of degree d(v) < k in
G. The graph G — v is k-degenerate because every subgraph of G — v is a subgraph of G, so
it has a proper (k + 1)-coloring c. Then there are at most k different colors in ¢ among the
neighbors of v since d(v) < k. Thus we can assign to v a color that does not appear among
its neighbors. This extends ¢ into a proper k + 1-coloring of G. [

Corollary 6.7. x(G) < A(G) + 1 for every graph G.

Proof. Recal that A(G) is the largest degree in G. Then G is clearly A(G)-degenerate. The
proof is therefore immediately concluded by application of Theorem [6.6] O

This inequality is tight, i.e. it is an equality, for cliques and odd cycles. Interestingly
those two types of grahs are basically the only ones for which x(G) = A(G) + 1, as shown
by the following theorem.

Theorem 6.8 (Brooks, 1941). Let G be a connected graph which does not have a subgraph
isomorphic to K,, or Copy1 for any integer n or k. Then x(G) < A(G).

6.2 EDGE COLORING

Definition 26. A proper edge coloring of a graph G is a map ¢ : E(G) — X for some set
of colors X, such that c(e) # c(e') whenever e, e’ are distinct edges that share a vertex.

The edge-chromatic number x'(G) of G is the minimum size of such a set X, i.e. it is
the minimum number k such that the G can be properly k-edge-colored.

Examples

e The edge chromatic number of the triangle is 3: x'(K3) = 3.
e It is the same for Ky: x/'(K4) = 3.

e Even length cycles have edge chromatic number 2: x/'(Cy) = 2
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The picture on the right is an edge coloring of
the Petersen graph with four colors. It is not
difficult to see that its edge chromatic number
is equal to 4.

Definition 27. A matching M is a set of vertez-disjoint edges, i.e. a set of edges such that
no two of them share an end vertez.

Each color class is a matching, so a proper edge-coloring is a partition of the edges into
matchings.

Lemma 6.9. For any graph G with at least one edge: A(G) < x'(G) < 2A(G) — 1.

Proof. There is vertex of degree A(G), and an edge coloring must give different colors to
each of the A(G) edges at that vertex. This implies x'(G) > A(G).

The upper bound follows by a proof similar to the proof of Theorem [6.6f we apply
induction on the number of edges. So delete an edge e, and take a (2A(G) — 1)-edge-coloring
of G — e. Since an edge shares a vertex with at most 2(A(G) — 1) other edges, there must
be a free color left for e. [

This simple upper bound can however be significantly improved. Indeed, the following
theorem states that any graph G has edge-chromatic number either A(G) or A(G)+ 1. Both
are possible, since even cycles have '(G) = A(G) whereas odd cycles have x'(G) = A(G)+1.
However the algorithm in the proof still does not always give the exact number. In fact
deciding which of the two values is the edge-chromatic number of a given graph is an NP-
hard problem.

Theorem 6.10 (Vizing - 1964). For every graph G we have X'(G) = A(G) or A(G) + 1.

Proof. We only need to show x'(G) < A(G) 4+ 1. We prove this by induction on the number
of edges. The statement clearly holds for a graph without edges.

Given an edge ry € E(G), we describe an algorithm that, given an edge coloring of G —zy
with at most A(G) + 1 colors, produces an edge coloring of G with this many colors. But to
find a color for xy, the algorithm may have to change the colors of other edges.

So take a proper A(G)+ 1-edge-coloring of G—xy. As there are more than A(G) available
colors, every vertex has at least one color missing from the edges touching it. We say that a
vertex v is c-free, if no edge incident to v has color c.

Now let us build a “fan” of edges around z as follows: take the edge xy, and let yg = y.
We know that yg is c;-free for some color ¢;. Now let xy; be an edge of color ¢y, if such an
edge exists. Then y; is co-free for some color cs.

Continue similarly: if there is an edge at = of color ¢; that we have not looked at, let zy;
be this edge, and let ¢;.1 be a color missing at y;. We repeat this process until it is no longer
possible to add an edge. Let zy; be the last edge added. There are two possible reasons for
getting stuck: either there is no edge at = of color ¢y, or this edge already appeared at
some previous zy;.
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Case 1. x is ¢py-free.

In this case we can just “rotate” the colors around z: define the new color of xy; to be
cirq for every i = 0,..., k, keeping the colors of all other edges. This does not create any
issue with any y; because it had been c¢;, -free. There is no problem at x either, because
the only new color introduced is ¢x;;. Hence this is a proper A(G) + 1-edge-coloring of G
including the edge xy = xyp.

Case 2. x is not cp41-free.

As noted above, the maximality of k& implies that some edge xy; is cg.1-colored, so by
definition ¢, = ¢;. Let us just call this color ¢, and let d be a color such that z is d-free.

Now let P be a maximal path starting at x that only uses the colors ¢ and d. Since every
vertex touches at most one c-colored and one d-colored edge, and x is d-free, there is a unique
such maximal path P = zy; ...z for some vertex z. Let us swap the colors ¢ and d along the
path. The same observation shows that this is still a proper edge-coloring of G — e. Now we
again distinguish two sub-cases.

Sub-case 2.A. z = y;_1.

Note that y; 1 was c-free, so the last edge of P must have had color d. After swapping,
Yi—1 is no longer c-free, but it is now d-free. However, the edge xy; has color d, as well, so
the edges xy; satisfy the required properties with ¢; = d now. As x is now c-free, we arrive
at a situation covered by Case 1, which gives a proper coloring of G, by rotating the colors,
i.e. coloring each xy; with color c; ;.

Sub-case 2.B. z # y; ;.

In this case, y;_; remains c-free, and = becomes c-free as well. This means that we can
rotate the colors on the first 7 edges only to get a proper edge coloring: recolor zy; with the
color ¢;y; for every j = 0,...,7 — 1, and leave the color of other edges the same as what we
had after swapping ¢ and d along P. By the same arguments as before, every edge is colored,
but no two touching edges get the same color. O

31



32



Lecture 7
Matchings. Bipartite Graphs.

7.1 STABLE MATCHINGS

Recall the following from previous chapters: (i) a matching M is a set of vertex-disjoint
edges; (ii) a graph is k-regular if all degrees equal k.

Definition 28. A perfect matching M in a graph G is a matching that touches every vertex
of G. In other words, it is a I-reqular subgraph of G.

Example: suppose that you have n students that want to do their internships in n compa-
nies. Each have sent their applications to all the companies. Each student and each company
has their list of preferences, and we want to pair up the students with the companies so that
this assignment is stable in the following sense: there is no student and company that would
both prefer to work with each other rather than their assigned pairs. Such configuration can
be formally defined as a stable matching.

Definition 29. Let G be the complete bipartite graph K, , with parts A and B (|A| = |B| =
n). Assume that for each vertex v there exist a complete strict ordering <, in N(v), called
“set of preferences”. We say that a perfect matching M s stable if there exists no vertices
a,r € A and b,y € B, such that: ay,xb € M but y <, b and x <, a.

Theorem 7.1 (“Stable mariage theorem”, Gale, Shapley - 1962). Let G = (V = AU B, E)
be the complete bipartite graph on 2n vertices such that |A| = |B| = n. Then for any sets of
preferences <,, v € V, G has a stable matching.

This theorem can be proven using the following algorithm which actually constructs such
a stable matching.

Input: The complete bipartite graph G = (AU B, E) such that |A| = |B| = n.
Input: A set of preferences <, associated to each vertex v of G.
Output: A stable perfect matching M of G.
1 Initialize the matching: M = ().
For a € A consider bt(ln) <o =a b((11) the ordered list of neighbors of a.
Initialize the index in the preference list: i, = 1.
while 3a € A such that ay € M, y € B do
Set b= by,

[ I V)

ot

/* a ‘‘proposes’’ to b */

6 if fabe M, € Aor Jd'be M, d <, a then

7 Add ab to the matching: M + M U {ab}.

8 Remove a'b from the matching: M + M\ d'b.

9 Update the next neighbor to try for a’: i, < 4 + 1.
10 else

11 L Update the next neighbor to try for a: i, < i, + 1.

Algorithm 2: Gale-Shapley
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Proof.

Termination:

At each iteration of the while loop, line 4] either the index in the preference list of a, i,,
or in the list of d’, i,, is increased by 1. Since the preference list of each vertex v is finite, so
is the maximum number of iterations of the loop. Therefore the algorithm terminates.

Correctness:

The output matching is perfect. Indeed, if there is a pair of vertices a € A,b € B, such
that both are not in the matching, then a must have proposed to b at some point. However,
if a vertex b € B is in M at some step of the algorithm, then it stays in M.

The output matching is stable. Assume that ab ¢ M. Upon completion of the algorithm,
it is not possible for both a and b to prefer each other over their current match. If a prefers b
to its current match, then a must have proposed to b before its current match. If b accepted
the proposal but is matched to another vertex at the end, then b prefers its current match
over a. If b rejected the proposal, then b was already matched to a vertex that it prefers. [

7.2 MAXIMUM MATCHINGS

The previous problem is about perfect matchings in a complete bipartite graph. But not
every graph has a perfect matching. So how can we find a largest or maximum matching?
As a reminder, a mazimum matching must not be confused with a maximal matching, which
just means that it cannot be extended, i.e. no larger matching contains it as a subgraph.
Now, how can we even tell if a graph has a perfect matching? How can we check if a given
matching is maximum?

Observe that maximum matching are necessarily maximal but the opposite is not true.
For instance, in a path with three edges, the matching consisting of only the middle edge is
maximal but not maximum. A greedy approach that keeps adding edges without removing
any, like the one used for spanning trees, would thus probably not lead to a maximum
matching. Instead, an algorithm to find maximum matchings would need some kind of
backtracking where some edges previously selected can be thrown away latter in the execution.
The following notion allows to elaborate upon this idea.

Definition 30. Given a matching M in a graph G, a path is alternating if among any two
consecutive edges on the path, exactly one is in M. An alternating path with at least one
edge is augmenting if its first and last vertices are not covered, also said to be “saturated”,
by M. Note that an augmenting path always has odd length.

Theorem 7.2 (Berge - 1957). A matching M is mazimum if and only if there is no aug-
menting path for M.

Proof. We prove that M is not maximum if and only if there is an augmenting path for M.
First suppose that there is an augmenting path P = wvjv,...v9 for the matching M. So
VU3, .+« « , V9iU2i4 1, - - -, Vop_2Vor_1 € M. Then we can get a larger matching by removing these
edges from M and replacing them by wvivg, ..., V9 1U2;, ..., Vo 1V9,. In other words, we
replace M by M’ = MAE(P)[] Then M’ is a matching since v; and vk were unmatched
by M, and we have |M’'| = M| + 1, hence M is not maximum.

Now suppose M is not maximum, i.e. there is a matching M’ with |M’'| > |M|. Let H
be the graph with V(H) = V(G) and E(H) = MAM'’. Every vertex of H has degree 0, 1
or 2, so each component of H is either a cycle, a path, or an isolated vertices. A cycle in H
has the same number of edges from M and M’, so |[M’'| > | M| implies that there is a path
P in H with more edges from M’ than from M. Then P is an augmenting path for M. O

We write SAT for the symmetric difference of two sets, i.e. SAT = (S\T)U (T \ S).
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This result shows how to extend a matching: we just need to find an augmenting path.
If no such path exists, then the matching is maximum. But it is not so easy to check if an
augmenting path exists; a naive algorithm would take exponentially many steps. An efficient
algorithm for a maximum matching was found by Edmonds in 1965 which is not covered in
this course. However, the problem is much simpler in bipartite graphs.

7.3 MATCHINGS IN BIPARTITE GRAPHS

Let G = (AU B, E) be a bipartite graph, and M be a matching in it. Note that the end
vertices of every augmenting path P are in different parts because P has odd length. So if
there is an augmenting path in G, then it starts in S = A\ V(M) and ends in ' = B\ V(M).
Crucially, such a path starting in S will always use an edge not in M to jump to B, and an
edge in M to jump back to A.

So let us define Dy to be the directed graph obtained from G by orienting edges not in
M from A to B, and orienting edges in M from B to A. The observations above show that
augmenting paths in G correspond to directed S-T" paths in Dy; an S-T" path being a path
that starts in S and ends in 7.

The point is, finding S-T" paths in a directed graph is easy, using breadth-first-search
for example. Together with Theorem [7.2] we arrive at the following algorithm for finding a
maximum matching in a bipartite graph.

Input: A bipartite graph G = (AU B, E).
Output: A maximum matching M of G.
Initialize the matching: M = {).
Initialize the subsets of vertices S and T: S=A, T = B.
Initialize the directed graph Dy;: Dy = (AU B, {abla € A, b€ B, ab € E(G)})
while there exists a directed S-T path in Dy do
Find such a directed S-T path P in D, using BFS.
Extend the matching using the path: M + MAP.
Update the subsets of vertices S and T: S = A\ V(M) , T = B\ V(M).
Update the set of oriented edges in D :
V(Dap) ={abla€ A, be B,abe E(G)\ M}U{bala€ A, be B, abe M}

N O oA W N

Algorithm 3: Augmenting path

7.4 PERFECT MATCHINGS

The next question we study is: when does a bipartite graph have a perfect matching?
Apart from the trivial condition |A| = |B|, it is easy to see that we need every set X C A to
have at least | X| neighbors. This condition turns out to be sufficient, as shown by the next
theorem.

Definition 31. A matching M matches or covers a vertex set X if every verter of X is
contained in an edge of M. For a set X C V(G), we define the neighborhood of X in G as
NX)={veV(G)\X|Jue X, we EG)}.

Theorem 7.3 (“Mariage theorem”, Hall - 1935). Let G = (AU B, E) be a bipartite graph.
Then G has a matching covering A if and only if for all X C A we have |[N(X)| > | X]|.

Proof. For the implication, note that if G has a matching M that matches A, then the

vertices of any X C A are matched by M to |X| distinct neighbors in B, which implies
IN(X)| = |X].
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For the reciprocal, suppose |[N(X)| > |X]| for every X C A. Let M be a maximum
matching, and let S = A\ V(M) and T'= B \ V(M) be the unmatched vertices in A and
B. By Theorem and the discussion above, there is no S-T path in D .

Let X denote the set of vertices in B that can be reached from S via a directed path
in Dy, then Xp is disjoint from T, therefore all vertices in Xp are matched by M. Let
X4 C A be the set of vertices matched to Xg by M, then X4 is clearly disjoint from S. As
the matching edges are directed from B to A, the vertices in X4 are also reachable from S
in Dy via Xp.

To finish the proof, we then only need to check that N(X4 U S) C Xp, because this
together with the initial assumption applied to X = X4 U S would imply:

[ Xp| = [N(X4US)| = [XaUS| = |Xu| +[S] = |Xp| + 9]

and hence S = (), which is what we want to prove.

To prove that N(X4US) C Xp, first note that all vertices in X4 U S are reachable from
S in Dpq. Now if there is a vertex b € B\ Xp adjacent to some a € X4 U S, then ab is
cannot be a matching edge. Thus ab is directed from a to b in Dy,. Consequently, b ¢ Xpg
is reachable from S, which is a contradiction. Therefore N(X4 U S) C Xp and hence S = ()
which implies that M covers A. ]

If |A| = | B|, then of course every matching covering A covers B, as well. So Hall’s theorem
implies that a bipartite graph G = (AU B, F) has a perfect matching if and only if |A| = | B
and [N (X)| > | X]| for every X C A.

The property “|N(X)| > |X| for every X C A” is often referred to as Hall’s condition.
Testing this property algorithmically is slow, but it turns out to be a convenient thing to
check in many theoretical applications.

Corollary 7.4. Let k > 1 be a integer. Every k-regular bipartite graph has a perfect matching.

Proof. Let G = (AU B, E) be a k-regular bipartite graph. Since every edge touches exactly
one vertex of A, and every vertex of A touches exactly k edges, the number of edges in G is
exactly k|A|. By a similar argument, the number of edges is exactly k|B|, so k& > 1 implies
Al = |B].

As discussed above, Hall’s condition would now guarantee a perfect matching. To check
it, let X C A be a vertex set. We can double-count the edges touching X. On the one hand,
there are exactly k| X| such edges. On the other hand, every such edge has its other endpoint
in N(X), so the number of such edges is at most k|N(X)|. Hence k| X| < k|N(X)]|, which
again implies | X| < |N(X)]. O

Finding perfect matchings in regular bipartite graphs can be iterated to get a proper edge
coloring.

Corollary 7.5. Let G be a k-reqular bipartite graph. Then x'(G) = A(G).

Proof. Recall that x'(G) is the edge-chromatic number of G. The inequality x'(G) > A(G)
is thus obvious.

Now, we can prove that x'(G) < A(G) by induction on k. The inequality is true for
k = 0. For k > 1, apply Corollary to find a perfect matching M in G. Color this
matching with some color, and apply induction on the (k — 1)-regular graph G — M to find
a (k — 1)-edge-coloring of the remaining edges. O

Note that this improves Vizing’s theorem for regular bipartite graphs. Actually, we can
drop the regularity condition which yields the following theorem.

Theorem 7.6 (Konig - 1916). For every bipartite graph G, we have X'(G) = A(G).

36



Lecture 8

Konig’s theorem. Flows.

8.1 KONIG’S THEOREM

Definition 32. Given a graph G, a vertex cover for G is a set of vertices C C V(G) such
that every edge of G is incident with a verter in C'. The minimum size of a vertex cover in
G is denoted by 7(G).

We can observe that C C V(G) is a vertex cover for G if and only if V(G) \ C is an
independent set in G, which readily implies that |V (G)| = 7(G) + a(G). Just like finding a
maximum independent set, finding a minimum vertex cover in a graph is a hard problem in
general.

It can also be noticed that vertex covers are related to matchings: in fact the set of all
saturated vertices from any maximal matching forms a vertex cover. This is true in particular
for a maximum matching. We denote by v(G) the size of a maximum matching in G. Note
that the “size” of a matching is the number of edges in it, while the “size” of a vertex cover
is the number of vertices in it. The following theorem shows that those two characteristics
are equal for bipartite graphs.

Theorem 8.1 (Konig - 1931). Let G = (AU B, E) be a bipartite graph. Then v(G) = 7(G).

Proof. 1t is clear that v(G) < 7(G), because a vertex cover has to cover every edge of the
matching with one of the end vertices of the edge. So to cover a matching of size v(G), we
need at least this many vertices.

Now we prove that v(G) > 7(G). Let M be a maximum matching of G, and as before, let
S=A\V(M) and T' = B\ V(M) be the set of unmatched vertices. As observed previously,
since M maximum there is no S-T path in D .

Let Xp be the set of vertices in B that can be reached from S via a directed path in
Dy, and let Y4 be the set of vertices in A that cannot be reached from S in Dy,. Clearly,
Xp is disjoint from 7" and Y}, is disjoint from S. Note also, that either both end vertices of
an edge in M can be reached from S, or neither of them can be. In the former case, the
edge has an end vertex in Xp, in the latter case it has an end vertex in Y,. Consequently,
[ Xp UYa| =|M]|

Now we can prove that XgUY}, is a vertex cover. Suppose it is not, then there is an edge
uv with u € A and v € B not covered by this set, i.e. u € Y4 and v € Xpg. But wv is not
a matching edge, so in D, it is directed from u to v. But then u € A\ Y4 can be reached
from S in D4, thus v should also be reachable via the edge wv. This contradicts v ¢ Xp.

Therefore X5 U Yy is a vertex cover of size v(G), implying v(G) > 7(G). O

8.2 FLoOws

Definition 33. A network is a directed graph G = (V, E) with two special vertices, the source
s € V and the sink t € V', together with a non-negative capacity function ¢ : E — R,
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Definition 34. A flow in a network G = (V, E) is a function f:V? — R such that:
1. flu,v)=0ifut ¢ E
2. capacity constraint: 0 < f(u,v) < c(u,v) for every w e E

3. flow conservation:

o for everyv € V \ {s,t}, Zf(v,w) = Zf(w,v)

weV weV
o > fls,w) = flw,s) =Y flw,t)— f(t,w)

The value |f| of a flow is defined as > .\, f(s,w) — f(w, s). Our main question of study
is: what is the maximum value of a flow in a network G?7

A cut in a network G is a partition (S, T) of the vertices (i.e. SNT =0 and SUT =V)
such that s € S and t € T'. For two vertex sets X,Y C V we define:

FXY)= ) flay) = fly,2) and o(X,Y)= ) ey

zeX, yey zeX, yeyY
We call ¢(S,T) the capacity of the cut (S,T).
Proposition 8.2. For every cut (S,T) we have f(S,T) = |f|.

Proof. By definition, |f| =", .y f(s,w) — f(w,s). Besides, by conservation of the flow, for
allv e S\ {s}, > ,evflv,w)=73" c flw,v). Hence:

1= fls,w) = flw,s)+ D> D flv,w) = f(w,v)

weV veS\{s} weV
:Zf(uav)_f(vau>+ Z f(U,U>—f(’U,U>:f(S,T)
u,vES ueS, vel
=0
where the second equality holds by simply rearranging the terms. ]

8.3 FORD-FULKERSON ALGORITHM

So how large can a flow be in a network? Proposition implies that for any cut (5,7,

fl=F8T)= Y fluw)=flou)< Y fluv)< Y cluw)=cST)

ueSWeT ueSWeT ueS,weT
In particular, the maximum value of a flow is bounded by the minimum capacity of a cut.

Theorem 8.3 (“Max-flow, min-cut”, Ford—Fulkerson - 1956). In every network, the maxi-
mum value of a flow equals the minimum capacity of a cut.

The proof of the lower bound is algorithmic, and uses the concept of residual graph and
augmenting path.
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Definition 35. Given a flow f, the residual graph G is a directed graph defined by: V(Gy) =
V(G) and E(Gy) = {ut | ut € E(G) or v € E(G)}. It has a modified capacity function c;
defined by:

w,v) — f(u,v) + f(v,u) ifut € E(G)

o
for all ub € E(Gy), cp(u,v) = { —f(u,v) + f(v,u) otherwise

An augmenting path is a directed s-t path vy,...,v; in Gy (vo = s and v, = t) such that
cp(vi1v;) >0 for alli € {1,...,0}.

Intuitively, the residual capacity of each edge of G corresponds to the additional flow
that can go through it in G: c(u,v) — f(u,v) is the flow that can be added on w0, while
f(v,u) is the flow that can be removed from the edge in the opposite direction, v0. The
capacity of edges w0 that are not originally present in G is set to 0.

Ford-Fulkerson algorithm repeatedly finds an augmenting path and pushes some extra
flow through it to increase the value of f.

Input: A network G = (V| F) with source s € V, sink t € V' and capacity function c.

Output: A flow f and a cut (S,7) such that |f| = ¢(S,T).

Initialize the flow and the residual graph: for all u,v connected in G, f(u,v) = 0.

while there exists an augmenting path P do

3 Define 6 the largest possible increment of flow along the path: ¢ = %nin{cf(u, v)}
utbe

N =

P
4 Increase the flow by 0 along the path: for all ub € P,

if F(u,v) — f(v,u) +6 > 0 { %,’5; R (CRL

f(u,v) 0

otherwise { f,u) « = (f(u,v) = f(v,u) +6)

¢ | Update Gy.

7 Define S as the set of vertices reachable by a directed path from s in G such that
all intermediate edges have non-zero residual capacity. Define T as: T =V \ S.

Algorithm 4: Ford-Fulkerson

We now verify that the algorithm terminates and is correct in the specific case where ¢ is
integer valued.

Proof of Theorem|[8.3.

Termination: Assume that all capacities in the network are integral, we then have that
0 > 0 is an integer at each step, and so d > 1. Since the flow must be finite, bounded by the
capacity of any cut, the algorithm therefore terminates in a finite number of steps.

Correctness: First note that, at each step, f is feasible in G, i.e. it satisfies the three
conditions in the definition of a flow for the initial graph G. Now, at the last iteration of the
while loop, line 4] the condition is not met, i.e. there exist no augmenting path. Therefore,
by definition of S, for all wb € E(Gy) such that u € S and v € T, ¢f(u,v) = 0 which is
equivalent to f(u,v) — f(v,u) = c¢(u,v). Therefore we have:

f(S’T): Z f(u7v)_f(vau): Z C(U7U)ZC(57T)

u€eS, vel u€eS, veT

Since ¢ is always an integer, following corollary is also true.
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Corollary 8.4. If the capacity of the network c is integer valued function, then there is an
integer maximum flow.

Note that for the algorithm to stop, it was important that c takes integer values. The same
argument works for rational ¢ as well, e.g. by multiplying all values with a number to make ¢
integral, but the algorithm might not stop if ¢ has non-rational values. However, Theorem
holds for any non-negative real capacity function. This can be proved by approximating it
with a rational function and taking the limit. Alternatively, Edmonds and Karp showed that
the algorithm stops in a bounded number of steps no matter what the capacity function is,
provided that it chooses the shortest augmenting path of G, line |2| of the algorithm.

As an illustration of application of the Ford-Fulkerson theorem, we can use it to prove
the theorem by Konig detailed at the beginning of the chapter.

Proof of Kénig’s theorem (Theorem via Ford-Fulkerson.

Given G = (AU B, FE), let us create a network by adding a source s and a sink ¢: s is
connected to each \Le>rtex a € A via an edge 56 of capacity 1; t is connected to each vertex
b € B via an edge bt of capacity 1. We also orient all existing edges of G from A to B and
assign them a “large enough” integer capacity K, i.e. K > |A|.

Let f be a maximum flow. Since all capacities are integers, f is an integer flow by
application of Corollary [8.4, We claim that the G-edges with strictly positive flow form a
matching. Indeed, each such edge uv € E(G) has a flow f(u,v) > 1. If two such edges shared
a vertex a € A, then the inflow at a is at most 1 and the outflow is at least 2, which is not
possible according to the flow conservation rule. Similarly, two such edges cannot meet in
B, either. Hence each edge uv € E(G) with non-zero flow is such that f(u,v) =1 and thus
v(G) = [f].

Now let (S,7T) be a minimum cut. We prove by contradiction that (S N B) U (T N A)
is a vertex cover. Assume there exists an uncovered edge uwv € E(G) with u € SN A and
v € T'N B. Then for the capacity of the cut, ¢(S,T) > ¢(u,v) = K. But (5,7) is a minimum
cut, thus ¢(S,T) < ¢(s,V '\ {s}) < |A| < K which leads to a contradiction. Furthermore,
every s-(T'N A) edge and every (S N B)-t edge contributes 1 to the capacity of the S, T cut,
so we have: 7(G) < |SNB|+|T NA| <¢(S,T). Hence:

7(G) < c(5,T) = |f] < v(G)

Together with the trivial inequality v(G) < 7(G), this finishes the proof. O
K
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Figure 7: Network created from the bipartite graph G.
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Lecture 9

Connectivity.

9.1 MENGER’S THEOREM

In the following, we look at what the Ford-Fulkerson theorem says about networks where
every edge has capacity 1. The results from this section hold for directed and undirected
graphs. We use the following notation: if G = (V, E) is a graph and W C V| F C E, then
G — W is the graph with vertex set V' '\ W and edge set E\ {e =uv € E: {u,v} NW # 0},
and the graph G \ F is the graph with vertex set V' and edge set E \ F.

Definition 36. Let G = (V, E) be a (directed) graph, and s,t € V.

We say that two paths s-t paths in G are edge-disjoint, if they don’t share any edges. We
say that they are internally vertex-disjoint, if they don’t share any vertices other than s and
t.

A subset F' C E is an s-t edge separator, if G\ F' contains no s-t path. A subset W CV
1s an s-t vertex separator, if G — W contains no s-t path.

The following theorem is one of the cornerstones of graph theory.
Theorem 9.1 (Menger - 1927). In a (directed) graph G = (V, E) with s,t € V:

1. Maximum number of edge-disjoint s-t paths = minimum size of an s —t edge separator.

2. If st ¢ E, then:
Maximum number of internally vertez-disjoint s-t paths = min size of an s — t vertex

separator.

Remember that it was used to prove Chvatal-Erdos theorem (4.10]) in lecture 4.
Proof.

“<” is clear in both statements. Indeed, to suppress all the edge-disjoint (resp. internally
vertex-disjoint) s-t paths, we need to delete one edge (resp. vertex) from each of them, all
of which are distinct. So any s-t edge separator (resp. vertex separator) has size at least the
number of paths.

Now we show “>” for directed G.
1. Take the network on G where all edges have capacity 1. We will prove the following:

max # s-t edge-disjoint paths > max flow = min cut > min s-t edge separator

For the first inequality, take a maximum integer flow f. If |f| > 0, then there is an
s-t path P using flow edges. Removing P from f decreases the value of f by 1. More
precisely, we “push back” a capacity-1 flow on P to decrease |f| by 1. Crucially, as all
capacities are 1, the new flow does not use any edge of P. By repeating this step |f]
times, we get | f| edge-disjoint s-t paths, as desired.

The equality in the middle is just the max-flow min-cut theorem, Theorem [8.3] For the
last inequality, note that the edges appearing in a min cut form an s-t edge separator.
As the edge capacities are all 1, the capacity of this cut is exactly the number of edges
in the edge separator.
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2. The key to ensure edge-disjointness in the first statement was to limit the edge capacities
to 1. To limit the capacities of vertices, we define the network GG based on G as follows
(see example Figure [§):

e for every vertex v € V, we add two vertices v;, and vy, to G’, connected by a
directed edge v;,v,,; of capacity 1, we denote them “vertex edges”;

e for every directed edge u € E , we add the edge gy, vy, of capacity +o00 to G.

Again, we prove the following inequalities regarding edges in G that translates into
results regarding vertices in G

max # edge-disjoint s-t paths > max s,,-t;, flow in G = min cut > min s-t edge separator.

For the first inequality, take a maximum integer s,,-t;, flow f in G. If |f| > 0, then
there is an s-t path P using flow edges. As st € E, P must use at least one “vertex
edge” (Vin, Vout), and so the capacity of the path P is 1. This means that pushing back
capacity 1 on P decreases |f| by 1, and ensures that the “vertex edges” appearing in
P are not used by the remaining flow. So repeating this we get |f| paths in G, and the
corresponding paths in G are internally vertex disjoint.

The equality in the middle is again the max-flow min-cut theorem. For the last in-
equality, note that the min cut has finite capacity, because P ¢ F, so all edges in the
cut are “vertex edges” corresponding to a vertex separator. They all have capacity 1,
so the capacity of this cut is exactly the number of vertices in the separator.

To prove the undirected variants of Menger’s theorem, one can just replace every undirected
edge with two directed edges, one in each direction, and apply directed version of the theorem
to it. 0

O

source
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mn out

(b) G

Figure 8: Example of the network G derived from a directed graph G. Original edges in
G are replaced by edges in G (in black) of infinite capacity from out to in versions of the
original end vertices. Capacity 1 edges (in red) connect the in to out versions of each node.
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9.2 CONNECTIVITY

For the remaining of this chapter, we consider again undirected graphs.

Definition 37. G = (V, E) is k-connected if |V| > k and G — X is connected for any set
X of at most k — 1 vertices. The greatest k such that G is k-connected is the connectivity
k(G). G is k-edge-connected if G\ F' is connected for every set F' of at most k — 1 edges.
The greatest k such that G is k-edge-connected is the edge-connectivity «'(G) of G.

Now we can make some observations:

e (G connected <= G is 1-connected <= G is l-edge-connected;
e if G is k-(edge-)connected, then it is (k — 1)-(edge-)connected;
e for cliques: k(K,) =n —1; for cycles: k(C,) = r'(C},) = 2.

Definition 38. Let G be a connected graph. A bridge is an edge e such that G \ e is
disconnected. A cut vertex is a vertex v such that G — v is disconnected.

We can observe that:
e (7 is 2-connected <= G has no cut vertex;
e (5 is 2-edge-connected <= G has no bridge.
Theorem 9.2 (Global version of Menger’s theorem). Let G = (V, E) be a graph.
1. G s k-edge-connected <= G contains k edge-disjoint paths between any two vertices.

2. G is k-connected <= G contains k internally vertex-disjoint paths between any two
vertices.

This is a strong characterization of k-connected graphs that easily implies the following
non-trivial facts.

Proposition 9.3. x(G) < k'(G) < 4(G).

Proof. k'(G) < §(G) is trivial, because deleting all edges touching a vertex disconnects G.
To show k(G) < &/(G), note that by Theorem 9.2 any two vertices of G are connected by
k(@) internally vertex-disjoint paths. But then these paths are edge-disjoint, so any two
vertices are connected by k(G) edge-disjoint paths, hence G is k(G)-edge-connected by the
other direction of Theorem [9.2] O

Proposition 9.4. G is 2-connected <= any 2 vertices of G are on a cycle.

Proof. By Theorem [9.2] G is 2-connected if and only if any two vertices are connected by
2 internally vertex-disjoint paths. But this happens if and only if the two vertices are on a
cycle, which is the union of the two paths. O

Going back to the global version of Menger’s theorem, we need the following lemma to
prove the second equivalence regarding vertex connectivity

Lemma 9.5. Let G = (V, E) be a k-connected graph and s,t two vertices such that st € E.
Then G\ st is (k — 1)-connected.
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Proof. Let us define G’ = G \ st. We reason by contradiction and assume that there is a
set X of at most k — 2 vertices such that G’ — X is disconnected. Note that G — X is not
disconnected because G is k-connected, and G' — X = (G — X) \ st, so s and ¢ must be in
different components of G' — X. Now as G is k-connected, it has at least k& + 1 vertices,
so there is a vertex w ¢ X and different from s and ¢. We may assume that w and t are
in different components of G’ — X, if not then w and s are and a similar reasoning can be
applied. But now X’ = X U {s} is a set of k& — 1 vertices such that removing X’ from G
disconnects w and ¢, because deleting s deletes the edge st, and so G — X'’ is disconnected.
This contradicts G' being k-connected. O]

We can now we prove the global version of Menger’s theorem.

Proof of Theorem[9.2,

We make use of the result from the local version of the theorem.

1. <=: Let s,t € V connected by k edge-disjoint paths. Then any s-t edge-separator needs
to contain at least one edge from each path. As this is true for any pair of vertices,
there is no set F' of at most k — 1 edges such that deleting F' disconnects G, thereby
separating some two vertices.

=: If G is k-edge-connected, then there is smallest s-t edge separator of size at least
k for every s,t € V. Then by Theorem [0.1] s and ¢ are connected by k edge-disjoint
paths for any s,t € V.

2. «<: The above argument works the same with vertices instead of edges.

=: Again the same argument works, except for adjacent pairs s, € V because Menger’s
theorem cannot be applied if st € E. In this case, by applying Lemma [9.5 we know
that G’ = G \ st is (k — 1)-connected. Then we can apply Theorem [9.1) to G' and get
k — 1 internally vertex-disjoint s-t paths in G'. Together with the edge st, we get k
such paths in G, as needed.

]

The following corollary of the global Menger’s theorem, called the fan lemma, is a nice
and highly applicable tool for k-connected graphs.

Lemma 9.6 (fan lemma). Let G = (V, E) be a k-connected graph. For every x € V and
U CV with |U| > k, there are k paths from x to U that are disjoint aside from x, and each
has exactly one vertex in U.

Proof. Add a vertex u that is adjacent to all the vertices in U. The resulting graph is
still k-connected. By Theorem [9.2] there are k internally vertex-disjoint paths from z to w.
Removing u from these paths gives paths from x to U that are disjoint aside from z. If such
a path touches more than one vertex in U, then it contains a subpath with exactly one vertex
from U, which we can take instead. [
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Lecture 10
Extremal graph theory.

10.1 TRIANGLE-FREE GRAPHS

Let G be a graph on n vertices that does not contain any triangle as a subgraph, in other
words, G is K3-free. What is the maximum number of edges that G can have?

Bipartite graphs are natural good candidates. With a bit of thinking one can arrive at
the conjecture that Kna) is optimal, i.e. the answer is 5] - [5] = LZ—ZJ This is indeed

2
the case, as stated by the theorem below.
Theorem 10.1 (Mantel - 1907). A Kj-free graph on n vertices contains at most L”IQJ edges.

Proof. Let G be a K3-free graph with maximum degree A, let v be a vertex of such maximum
degree and let S = N(v) be its neighborhood, so |S| = A. Note that there is no edge with
both endpoints in .S, otherwise they would form a triangle with v. So every edge of GG touches
a vertex in V(G) \ S. Besides, every vertex touches at most A edges. Thus the total number

of edges is at most:

n2

AVIG)\ S| =An—A) <[]

where we used the fact that ab < (“TH’)2 for any a,b € R to derive the final inequality. [

Example: as an application of Mantel’s theorem, we answer the following question by
mean of modeling the original problem as a graph problem. Let a4,...,a, € R? be vectors
such that ||a;|| > 1 for each i € {1,...,n}. What is the maximum number of pairs satisfying
lla; + a;|| < 17 There are indeed at most L”IZJ such pairs.

Proof. Define the graph G on {1,...,n} where ij is an edge iff ||a; + a;|| < 1. It is enough
to show that G is triangle-free. But this is indeed the case since, for any 4,7,k € {1,...,n}

with i # j # k:
lai + a;)1* + llaj + axl* + llag + aill* = [lai + a; + apl|* + [lail]® + a;|1* + [lax]* > 3

So at least one of ||a; + a;||?, ||a; + ag|?, ||ax + a;||* is larger than 1. O

10.2 CLIQUES

Instead of triangles, we can ask the same question for arbitrary graphs: for a given graph
H, what is the maximum number of edges that an H-free graph on n vertices can have?

Definition 39. The extremal number or Turdn number of H, denoted ex(n,H), is the
mazximum value of |E(G)| among all graphs G on n vertices containing no H as a subgraph.

As a generalization of the triangle-free case, notice that graphs not having K,,; as a
subgraph can be obtained by dividing the vertex set V into r pairwise disjoint subsets
V = VU---UV, with |V;] = n; and n = ny + -+ + n,, joining two vertices if and
only if they lie in distinct sets V; and V;. We denote the resulting graph, called a complete
r-partite graph, by Ky, _n..
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It has ), _ jnin; edges. For a given n € N*, we get the maximum number of edges among
such graphs when we distribute the numbers of vertices n; as evenly as possible among parts,
that is [n; — n;| <1 for all ¢ # j. Indeed, suppose n; > ny + 2. By shifting one vertex from
Vi to Vi, we obtain K, 1 ,+1...n, Which contains (n; —1)(na+1) —nna =ny —ny—1>1
more edges than K,,, ., . In particular, if » divides n, then choosing n, = “ for all 7 yields

a total number of edges of:
2 1 2
2) \r r) 2

Turan’s theorem states that this is an upper bound for the number of edges in any graph
on n vertices without an (r + 1)-clique. This result is considered by many to be the starting
point of extremal graph theory. There are many different proofs known. The one we give
here is a generalization of our proof for Theorem [10.1]

Definition 40. We call the graph K,,, .,
the Turdn graph, denoted by T'(n,r).

with [n; —n;| <1 foralli,je{l,...,r}, i #j

T

Theorem 10.2 (Turédn - 1941). Among all the n-vertex simple graphs with no (r +1)-clique,
T(n,r) is the unique graph having the mazimum number of edges.

Proof. We apply induction on r. The case r = 1 is trivial; the case r = 2 is Mantel’s
theorem. Now assume r > 2 and let G be a K, -free graph on n vertices. Let v be a vertex
of maximum degree A = A(G) and let A = N(v) be the neighborhood of v and B = V(G)\ A
be its complement. By definition |A] = A. As G contains no (r + 1)-clique and v is adjacent
to all vertices of A, we note that G contains no K, with all vertices in A.

In the following, we define Ag and Bg (respectively Ay and Bpy) to be the subgraphs
induced by G (respectively by H) on the sets of vertices A and B.

Starting from G, we now construct another K, ;-free graph H on V(G) that has at least
as many edges as GG. We define By to be an independent set, i.e. By is Bg where all edges
{zy € E(G), z,y € B} have been removed. We consider that all possible edges between
Ap and By exist in H, i.e. all edges in {zy, z € A,y € B}. Finally, we define Ay to be
isomorphic to T'(A,r — 1). Then H is a complete r-partite graph. Hence it is K, ;-free.

To see that H has no fewer edges than G, let us define eg and e4 the number of edges
in G respectively touching and not touching B: ep = [{zy € E(G), {z,y} N B # 0}| and
ea = {zy € E(G), z,y € A}|. Then |E(G)| = e+ e4. Since each vertex of B has degree at
most A in G, we have: eg < A|B|. Besides, e4 < |E(T(A,r—1))| by the induction hypothesis
and using the fact that G is K,-free on B. Now observe that H contains exactly A|B| edges
touching B and |E(T(A,r—1))| edges not touching B. Therefore |E(G)| = ep+ea < |F(H)|.

This argument shows that |E(G)| < |E(H)| for a complete r-partite H. Furthermore, we
have seen that 7'(n,r) maximizes the number of edges among all complete r-partite graphs
on n vertices. Thus we have in fact |E(G)| < |E(H)| < |E(T(n,r))|, as needed.

To prove uniqueness, note that equality can only hold in our previous bound if: (i) A
induces the complete r — 1-partite graph T'(A,r — 1), using the induction hypothesis, and (ii)
B touches exactly An,. edges in G. But the latter (ii) can only happen if B is an independent
set in GG. Indeed, the sum of the degrees of the vertices in B counts each edge spanned by B
twice, and each edge connecting B and A once. As A is the maximum degree in G, the sum
of degrees is at most An,., so B can only touch this many edges if it spans none of them. But
then G is r-partite and since it has the maximum number of edges, G = T'(n, ). ]

Turan’s theorem shows that ex(n, K1) < (1 — %) ”72; there is equality when n is divisible
by r. But what happens for other graphs? What is ex(n, H) for an arbitrary H? Surprisingly
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the answer pretty much only depends on the chromatic number of H, at least when y(H) > 3.
That is what the Erdos-Stone-Simonovits theorem states.

Theorem 10.3 (Erdds, Stone, Simonovits - 1946). Let H be a graph of chromatic number
X(H)=r+1 withr > 2. Then for every € > 0 and large enough n:

(-2) () sewm=(-2) ()

10.3 BIPARTITE GRAPHS

For bipartite H, the Erdos-Stone-Simonovits theorem only says that ex(n, H) = o(n?).
It is one of the biggest questions in graph theory to determine the order of magnitude of
the extremal number of bipartite graphs. There are very few graphs for which we know the
answer. One such example is H = Cy = Kj.

Theorem 10.4. If a graph G on n vertices contains no Ky, then:
n
B@G)| < |0+ Vin=3)|

Proof. Let GG be a graph on n vertices without a 4-cycle. Let S be the set elementary
configurations defined by S = {(u, {v,w}) | w,v,w €V, w,uw € E, vw & E, v #w},
as illustrated Figure [9]

u

N

Figure 9: Elementary “cherry-looking” configurations in S

We will count the elements of S of in two different ways. Summing over u, we find

S| = Zuev(c) (dg‘)). On the other hand, and this is the crucial observation, every pair
{v,w} has at most one common neighbor, because G is K o-free. Hence |S| < (3). So far

we thus have: > (d(zu)) < (;), which is equivalent to:

Zd(u)2 <n(n-1)+ Z d(u)

Now applying the Cauchy-Schwarz inequality to the vectors (d(u1), ..., d(u,)) and (1,...,1),
we get: (Y ,cv d(u))2 <n Y ,ev d(u)?. This, together with the previous inequality implies:

(Z d(u)) <n*n—1)+n Z d(u)

ueV ueV

Recall that the sum of the degrees is equal to 2|E(G)|. Therefore we get the following
equation in |E(G)|:

AE(G)* < n*(n—1) + 2n|E(G)|

n*(n—1)

SIE(O) ~ 5IE(C)] - <0

Solving this quadratic equation yields the theorem. ]
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Theorem [10.4] shows that ex(n, Ko2) = O(n*?). This upper bound is tight in the sense
that there actually exist K o-free graphs on n vertices with Q(n?/?) edges.

The proof of this theorem can be generalized to arbitrary K, leading to the following
theorem.

Theorem 10.5 (Kovari, Sés, Turdn - 1954). For any integers 1 < s < t, there is a constant
¢ such that: .
ex(n, Koz) < cn®s

However, lower bound constructions where the number of edges has the same order of
magnitude is only known for s =¢ =2 and s = 2,t = 3.

For even cycles, the following result is the best known upper bound. Once again, matching
constructions are only known for k =2, 3, or 5.

Theorem 10.6 (Bondy, Simonovits - 1974). For any integer 2 < k, there is a constant ¢
such that:

ex(n, Cop) < cn'ti
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Lecture 11
The probabilistic method.

Probabilistic tools turn out to be extremely useful in discrete mathematics. Indeed cer-
tain combinatorial problems that have, a priori, nothing to do with probability sometimes
have simple solutions when introducing some randomness. The general idea is of the so-called
probabilistic method to prove the existence of an object with a given property is to define
a probability space on a larger non-empty set of objects and prove that one element of this
space has the desired property with non-nil probability. In graph theory more particularly,
the application of the method will often consists in defining a probability space on the set of
vertices, edges, or specific subsets like partitions, cuts, etc., with carefully selected probabili-
ties. A historical milestone that can be regarded as the inception of the probabilistic method
is the proof by Erdds of its theorem stating the existence of graphs with simultaneously large
chromatic number and girth. Deeper theoretical results, like the Szemerédi regularity lemma,
actually show some inherent connection between graphs and random structures.

11.1 REVIEW OF BASIC NOTIONS

We will use standard notions from probability theory, although in a quite restricted set-
ting: we will always work with a probability space that is defined on a finite base set €2
with a probability mass function p : @ — [0, 1] satisfying > ., p(w) = 1. The events in this
probability space are all subsets £ C €2, and the probability that £ holds is P[E] = ) . p(w).

A random variable is just a function X : 2 — R. The expected value or expectation of a
random variable X is:

BIX] = 30 PIX = 2] = 3 p(w) - X ()

reR weN

A very important fact that can be easily seen from the right-hand side of this equality,
is the linearity of expectation, i.e. that for any two random variables X and Y we have
E[X +Y] = E[X]| + E[Y] and for any real ¢, E[cX]| = cE[X].

Two events & and & are said to be independent if P[E; N &) = P[&;] - P[&]. For more
than two events, &1, ..., & are independent if for any I C {1,...,k}, we have:

P [ﬂ 51»] = [[ el

iel iel
Similarly, the random variables X7, ..., X} are independent if for any x4, ...,z and any
I c{1,...,k}, we have:

P

X = x] = [[PIX; = =]

i€l el

11.2 DIRECT APPLICATIONS

As a first example, we provide a new proof of property previously covered about the
existence of a subgraph containing at least half as many edges as the original graph. We
provide here a probabilistic argument.
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Proposition 11.1. Any graph G contains a bipartite subgraph H with |E(H)| > |E(G)|/2.

Proof. Let us take a random partition of the vertices into parts A and B, where each vertex
is independently assigned to A or B with probability 1/2. So 2 is the set of all partitions. For
every edge e € E(G), let X, be the indicator random variable for the event that e “crosses”
between A and B. Then X =} _ B(G) Xe is a random variable that counts the number of
edges crossing between A and B. Thus the expected number of edges crossing is:

er] = E[X.]

ecE eelR

Now for an edge e = uv, we have:

E[X.] = Ple “crossing”| =Plu € A,v € B|+Plue€ B,v e A|] = +

l\:>|>—l
[\3|>—l
DN | =
N | —
[\

Hence E[X]| = Y .5 1/2 = |E(G)|/2. But then there must be a partition w € € such
that X (w) > |E(G)|/2, otherwise the expectation would be strictly smaller. O

Note that this is only an existence proof. We do not get any information on how to find
such a subgraph.

As another application of the probabilistic method, we now prove the following theorem
that connects the independence number of a graph to its degree sequence.

Theorem 11.2 (Caro - 1979). Let G be a graph. Then G contains an independent set of
size at least:

1
Z 1+ d(v)

veV(Q)

Proof. Let n = |V(G)| and let vy, ..., v, be a random ordering of the vertex set, that is an
ordering chosen from the set of all possible ordering with probability 1/n! . Let S be the set
of vertices v; such that v; has no neighbor in {vq,...,v;_1}. Then S is an independent set.
Let us calculate the expected value of the size of S.

For a vertex v, let X, be the indicator random variable that v is in S. That is: X, = 1 if
ves, X, = O otherwise. Then |S| =3 (i) Xv. Now, the probability of the event v € S
is exactly 17 d( , because v € S if v is the first vertex in the given ordering among all vertices

in {v} UN(v). Hence E(X,) = . By the linearity of expectation, we have:

1+d(
1
(1S]) E(X —_—
E(S) = > = 2 Tvdw
veV(Q) veV(Q)

Therefore there exists an ordering of the vertices such that |S| > ZUEV
concludes the proof.

1 .
H—T(v) y Wthé]l

11.3 CONSTRUCTIONS FOR THE KOVARI-SOS-TURAN THEOREM

By the Kovari-Sés-Turan theorem for every positive integer s > 2, we have:

ex(n, K,) < en? s
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where ¢ > 0 is a constant depending only on s. However, if s > 4, it is not known whether
1
ex(n, K, ) > ¢n*s also hold with some constant ¢ > 0. This is one of the central open
questions in extremal graph theory. In the following, we use the probabilistic method to find
. . 91 .
graphs with slightly less than n“"s edges that do not contain K.

Theorem 11.3. Let s > 2 be a positive integer. Then:

__2
ex(n, Ks,s) > 1—6712 (s+1)

Proof. Let p = %ns% and let GG be the random graph on an n elements vertex set in which
each pair of vertices is connected by an edge independently with probability p. The graph G
might contain K ,, but we can make it K s-free by deleting an edge from each copy of K ;.
Let X be the number of copies of K in G. More precisely, X is the number of pairs (A, B)
such that A, B C V(G), |A| =|B|=s, ANB =0 and ab € E(G) for every a € A, b € B.

Let us calculate the expectation of X. For any pair (A, B) such that A, B C V(G),
|A| = |B| = s, AN B = (), let X4 p be the indicator random variable that ab € E(G)
for every a € A,b € B. Then X = > X4 p. The probability that ab € E(G) for every
a € Abe Bis p”, as this is the probability that s? given edges are present in G. Hence,
E(Xap) = p*. The number of such (A, B) pairs is (") (%) < n*. By the linearity of
expectation, we get:

1 .
E(X) =) E(Xap) <n*p” = 2?712_s+1

Let Y be the number of edges of G. Then E(Y) = (5)p > in’p = %n%s%.
Consider the random variable Z =Y — X. Then we have:

1 1
E(Z) = ]E(Y) — E(X) — gTLQ_ sil o FnQ_ﬁ Z 77/2_%

1.2

Hence there exists a graph G satisfying Z(G) > {zn ~57. Remove an arbitrary edge from

each copy of K, s in G and let H be the resulting graph. Then H is K ,-free, and we removed

at most X (G) edges. Therefore we have E(H) > Y (G) — X(G) = Z(G) > 1_16712—$, O

11.4 ERDOS THEOREM ABOUT CHROMATIC NUMBER AND GIRTH

Recall Erdos Theorem [6.3| covered in a previous lecture about coloring. It states that: for
any integers k and {, there exists a graph G such that x(G) > k and g(G) > ¢, where g(G)
denotes the girth of G.

The meaning of this theorem is counter-intuitive: even graphs with large girth, which
locally “look” like trees and are therefore 2-colorable, can still be globally “hard” to color,
i.e. be properly colored only with a large number of colors. The theorem does not say how
to build such graph, constructing it is indeed extremely difficult, it only states that it exists
for any arbitrary pair (k, ). To prove the theorem, we only have to find a graph G without
“short” cycles, i.e. of length smaller than ¢, and without “big” independent sets, because
they would allow coloring G with fewer than £ colors.

We make use of the same type of random graph construction as in the proof of Theo-
rem m For n € N* and p € [0,1], we define G(n,p) as the set graphs on n vertices that
are the possible realisations of the following random process: each pair of vertices u,v is
connected by an edge with probability p independently from other pairs.
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Now, the idea is to carefully select p such that, for n large enough, there exists with
strictly positive probability a graph G € G(n, p) featuring the desired properties. If p is small
enough, G is unlikely to contain short cycles; if p is large enough, G is unlikely to contain
big independent sets.

In the proof, we make use of the following two lemmas and Markov inequality, restated
as follows: let X a random variable on R, and a > 0, then P[X > a] < @.

Lemma 11.4. The expectation of the number of £-cycles, 3 < ¢ <mn, in G € G(n,p) is

nn—1)...(n—£+1) , n! ¢
20 D= —onrad?

Lemma 11.5. For any integers n and k such that n > k > 2, the probability that a graph
G € G(n,p) has an independent set larger than k is at most:

Pla(@) 2 < ()1 - ®
Proof of Erdés Theorem [6.3,

Step 1: setup

Assume that ¢ > 3. Let 0 < ¢ < § and define p = n°~!. Let X(G) be the random variable
that corresponds to the number of cycles of length at most ¢ in a graph G € G(n,p) for a
given n € N*.

Step 2: there are few short cycles in G

By Lemma we can evaluate the expectation of X and give an upper-bound using the
fact that np =n® > 1:

14

E(X) = 23 m Z n'p — )niyt

Now, applying Markov inequality we have:

P [X > g] < E(X) < (E— Z)né—lpf _ (6— 2)7’/6_1

Since fe < 1, it implies: lim P [X > g] — 0.

n—-+0o

Step 3: large independent sets in GG are unlikely

For n € N* and r such that n > r > 2, using Lemma [11.5] we have:

Pla(G) > r] < (”) (1-p)&) <2°(1 - p)&) < 2" exp )
r
because 1 — p < exp~? for any p € R.
. n . r r(r— r2 2
Now consider r > %E > 2. Since (2) = % >0 for r > 2, then p(;) > pr =

and thus the upper-bound on the probability of independent sets larger than r is :

1 netl
16 k2

»
=
(@)
@)
2
)
=
Qo
=
=
-+
D
05
D
\"‘1
=
2
53
v
=
I
=
2
8
v

3% for r = [4%#]. Thus, using the
1
previous upper-bound: lim P [a(G 5%] 0.

n——+oo



Step 4: a graph with the desired properties exists
Using the two previous limits, we know that there exists ny € N* such that for n > ng,
P [X > %] < % and P [a(G) > %%} < % For n > ng we thus have:

P (X < g) and (a(G) < %%)] =1-P :ﬂ ((X < g) and (a(G) < %%))]
>1-P|~(X < g)] —P[ﬁ(a((% < %%}
> 12 (2 D) - (@) 2 ;)]

>0

Hence there exists a graph G € G(n,p) for a given n > ny which contains fewer than 7

cycles of length at most ¢ and such that o(G) < 1%
Now we define the graph H by deleting one vertex on each cycle of length at most ¢ in G.
Then |V(H)| > % and by construction, H does not contain any cycle of length ¢ or smaller,

i.e. g(H) > (. Furthermore, o(H) < a(G) because H is a subgraph of G. Therefore we have:

>k

VH)|  n/2
H) > >
=70 = a0
where the first inequality comes from Property and is valid for any graph.
The graph H has the desired properties, g(H) > ¢ and x(H) > k, which concludes the

proof of existence.
O
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Lecture 12

Ramsey’s theorem.

12.1 RAMSEY’S THEOREM. UPPER BOUNDS

We say that a clique in an edge-colored graph is monochromatic if all the edges in the
clique have the same color.

Proposition 12.1. If the edges of Kg are colored red and blue, then it contains a monochro-
matic red K3 or a monochromatic blue Ks.

Proof. Pick a vertex v. It has five incident edges, among which there must be three red edges
or three blue edges. Without loss of generality, assume there are three red edges vz, vy, vz. If
one of the edges xy, xz, yz is red, then it forms a red K3 together with the two corresponding
edges to v. Otherwise, the edges xy, xz,yz are all blue, so they form a blue Kj. ]

Theorem 12.2 (Ramsey - 1930). For every positive integer s, there is an N such that any
2-edge-colored Ky contains a monochromatic clique of size s.

The smallest such N is called the Ramsey number of s. Below is the general definition.

Definition 41. The Ramsey number R(s,t) is the smallest integer N such that whenever
the edges of Ky are colored red or blue, this coloring contains a red K, or a blue K;.

Proposition thus states that R(3,3) < 6. In fact, we even have R(3,3) = 6, because
the edges of K5 can be colored with red and blue without creating a monochromatic Kj.
Indeed, we can take a C5 in K5 and color its edges red; the remaining edges form another
Cs, which we color blue.

Ramsey’s theorem, as stated above, says that R(s, s) is always finite. The original state-
ment is a lot more general, for example it also implies that R(s,t) is finite. However, the
original bounds that Ramsey got were quite weak. The main results of this lecture are the
following lower and upper bounds on R(s, s). The upper bound serves as a proof for Ramsey’s
theorem.

For every s > 2:
29/2 < R(s,s) < 2%

Although these bounds seem far apart from each other, and indeed they are, they are
basically the state of the art today, as well: no improvement in the exponent is known for
either bound. Closing the gap is one of the biggest open problems in combinatorics.

Let us start with the proof of the upper bound. It is actually easier to prove a stronger
result:

Theorem 12.3 (Erdos, Szekeres - 1935). For every s,t > 3:

Ris.t) < <s+t—2)

s—1

Observe that this readily implies R(s, s) < (*77) < 2272,
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Proof. We apply induction on s + t.

For s = 2 the statement is true, because clearly R(2,t) = ¢. Similarly, for ¢ = 2, we have
R(s,2) = s, so the bound in the theorem holds.

Now observe that (Sj__f) = (s:f:?’) + (si_f) Then for the induction step, it is enough
to show the following:

R(s,t) < R(s — 1,¢) + R(s,t — 1) (1)

Let N = R(s — 1,t) + R(s,t — 1) and consider a coloring of the edges of Ky with red
and blue. Pick a vertex v. Then in Ky, there are at least R(s — 1,t) red edges or at least
R(s,t—1) blue edges incident at v. The cases are symmetric so we can assume without loss of
generality that v is an endpoint of R(s—1,t) red edges. Now consider the 2-colored complete
graph on the corresponding R(s — 1,t) neighbors of v. By the definition of R(s — 1,t), this
graph has either a red K, 1 or a blue K;. In the first case the red K,_; together with v
will form a red K, and in the second case we get a blue K;, so we get the monochromatic
clique we were looking for in both cases. This establishes the inequality in and finishes
the proof. ]

Before proving the lower bound, let us show an interesting application. We need to define
multicolor Ramsey numbers first.

Definition 42. The k-color Ramsey number Ry(si,...,sk) is the smallest integer N such
that whenever the edges of Ky are colored with k colors, there is an i such that the coloring
contains a K, in color i.

The following property implies that Rx(s1,. .., sx) is finite for any choice of k, s, ..., s.

Proposition 12.4. Let k,sy,...,s;, € N* such that k > 2 and s; > 3 fori € {1,...,k}.
Then we have:

Ri(s1,. .., 8k) < R(s1,- -+, Sp—2, R(Sk_1, 5k))

Corollary 12.5 (Schur - 1916). For every k there exists an N such that whenever the numbers
{1,..., N} are k-colored, there are x,y, z of the same color that satisfy v +y = z.

Proof. We prove that N = Ry(3,...,3) — 1 works. Let ¢:{1,...,N} — {1,...,k} be an
arbitrary k-coloring of the integers. We consider the k-edge-coloring ¢ of K1 on the vertex
set indexed by {1,..., N 4 1}, defined as follows:

c(ig) = c(li — jl)

As this defines a k-edge-colored complete graph on R(3, ..., 3) vertices, it must contain a
monochromatic triangle hij; without loss of generality assume that h < i < j. Then x = j—1,
y =1 —hand z = j — h are numbers in {1,..., N} of color ¢(x) = (ij), c(y) = y'(hi),
c(z) = (hj). These colors are all the same and, by definition of ¢ they also satisfy the
relationship: x +y = (j —¢) + (i — h) = j — h = z, which proves the property. O

12.2 RAMSEY NUMBERS. LOWER BOUNDS

We now proceed to the lower bound. Its proof is one of the first applications of the
probabilistic method in combinatorics, and was a major breakthrough at the time.
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Theorem 12.6 (Erdés - 1947). For every s > 3:

25/2 < R(s, s)

Proof. We actually prove the following:

if 21-() ("

5) <1, then R(s,s)>n (2)

To see that this is sufficient, we just need to check that n = 2%/? satisfies the inequality

n n’ n’
on the left. Indeed, it is easy to see that ( ) << 1Tz for s > 3. Hence, for n = 25/2
S s! s

we obtain:

51-(3) (73 < gl=s/24s/2 % 02y (/202 — 1
Now let us prove . Consider n € N* and color the edges of K, randomly red or blue
with probability 1/2, independently of the other edges. For each set A of s vertices, let X4
be the indicator random variable that A forms a monochromatic clique. Then X =), X4
is the random variable that counts the number of monochromatic s-cliques in this randomly
colored graph.
Then:

(
E[X 4] = P[A is monochromatic] = P[A is blue] + P[A is red] = 2 - (—)

Therefore:

B = 3 i) - (1) 0

ACV (Ky)
|Al=s

So if 21-(3) (n) < 1, then the expected number of monochromatic s-cliques in the graph is
S

strictly smaller than 1. In particular, there is a coloring where the number of monochromatic
s-cliques is zero, which concludes the proof. O

Note that with a slightly tighter condition, we can improve the lower bound a little bit
using the same reasoning. Indeed, the following is true:

it 21-() <”

3) = o(n), then R(s,s) > (1 —o(1))n (3)

To prove this, we can use the same argument to see that the expected number of monochro-
matic s-cliques in the random coloring above is o(n). Now this is not a good Ramsey graph,
but we can easily turn it into one by deleting a vertex from each of these monochromatic
s-cliques. This way we only delete o(n) vertices, so (1 — o(1))n vertices remain in the graph.
On the other hand, it no longer contains any monochromatic s-cliques.

Doing the calculations more carefully, implies R(s,s) > %25/ 2(1 + o(1)), whereas
e

implies R(s,s) > f2“”/2(1 + 0(1)) which improves the lower bound by a factor of /2.
e

However, it remains very far from the upper bound.
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The definition of the Ramsey number R(s,t) is often stated in terms of graphs without
edge colors: if one deletes all red edges from a 2-edge-colored complete graph and only keeps
the blue edges, then a red clique will correspond to an independent set and a blue clique
corresponds to an actual clique in the graph. With this in mind, the Ramsey number R(s, t)
can be equivalently defined as the smallest integer N such that every graph on N vertices
contains an independent set of size s or a clique of size t, i.e every N-vertex graph G satisfies
a(G) > s or w(G) > t.

Our lower bound construction is actually the Erdds-Rényi random graph G(n, 1/2), where,
more generally, G(n, p) is defined as a random graph where each pair of vertices is connected
by an edge with probability p independently of the others, as already introduced in the proof
of Theorem [I1.3]

12.3 AN UPPER BOUND ON Ry(3)

We finish the lecture by giving an upper bound on the k-color Ramsey number Ry (3, ..., 3)
sometimes imply denoted Rj(3), that we used in Schur’s theorem. The proof is quite similar
to the Erdos-Szekeres upper bound.

Proposition 12.7. For every k > 2, we have:

Ru(3) < e k!] +1

Proof. We apply induction on k. For k& = 2 the right-hand side is 6 and indeed R»(3) =
R(3,3) < 6.

Now suppose k& > 2 and take a k-edge-colored complete graph on |e - k!| + 1 vertices.
Note that [e- k] = S5, B. Indeed, e - k! = 377 & but here S, K is an integer and
S 1 B < 1. Now, observe the following;: ' '

i=k+1 4!
k k—1 k—1
k! k! (k—1)!
oM =2 G =14 g =1k ) T =k kle (-1

Now a vertex v in our graph has |e - k!| edges touching it, colored with k colors. The
above equation then implies that at least |e-(k—1)!| +1 of these edges have the same color 7.
Let S be the set of neighbors of v in color 7. If the graph contains an edge in color i between
two vertices of S then it forms a K3 in color ¢ with v. Otherwise, the edges between any two
vertices in S are colored with k — 1 colors only, and since |S| > |e- (k — 1)!] + 1, we get a
monochromatic K3 by induction. ]
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Lecture 13

Linear algebra techniques in graph theory.

13.1 ADJACENCY MATRICES

If G = (V, E) is a graph on n vertices, the adjacency matriz of G is the n x n sized matrix
Ag € R™™ where Ag(z,y) =1 if xy € E, and Ag(x,y) = 0 otherwise. Also, Ag(z,x) = 0.
By definition, Ag is a symmetric binary matrix, i.e. with entries in {0, 1}, with a 0 leading
diagonal. Furthermore, the adjacency matrix has the following properties:

° Tl"(Ag) = 0;
e cvery eigenvalue of A is real and Ag has an orthonormal system of eigenvectors;

e if G is d-regular, then (1,...,1) is an eigenvector of G with eigenvalue d;

e for every u,w € R", we have u’ Aqw = Z u(z)w(y) + u(y)w(x).
ryeE(G)

Let us now observe what are the eigenvectors and eigenvalues of complete graphs and
complete bipartite graphs.

Proposition 13.1. Let G be the complete graph on n vertices. Then n — 1 is an eigenvalue
of G with eigenvector (1,...,1), and —1 is an eigenvalue with multiplicity n—1 and eigenspace

U={ueR": Y cy@ulx) =0}

Proposition 13.2. Let G be a complete bipartite graph with vertex classes A and B, |A| = s
and |B| = t. Then 0 is an eigenvalue with multiplicity n — 2, and /st and —/st are the
remaining two eigenvalues. In particular, rank(Ag) = 2.

13.2 PARTITIONING INTO COMPLETE BIPARTITE GRAPHS

It can be proven that the edges of the complete graph on n vertices can be covered using
at most [log,(n)] complete bipartite graphs. But how many complete bipartite graphs do we
need in order to partition this set of edges, i.e. without edges from different bipartite graphs
overlapping? Surprisingly, it turns out that we need much more of them.

Theorem 13.3. Let G be the complete graph on n vertices and let By, . .., By be edge disjoint
complete bipartite graphs with V(B;) C V(G) fori € {1,...,k} whose union contains every
edge of G. Then k > n — 1.

Proof. By the conditions of the theorem, we have A = Ap, +---+ Ap,. For every u € R,
consider u” Agu. On one hand, we have:

uAgu= ) u(x)u(y)z(Zu(x)) =) u(z)? (4)

z,yeV,x#y zeV
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On the other hand, if X; and Y; are the vertex classes of B; for all i = 1,..., k, we have:

uAGu*ZuABu—Z S o gkp(zu )(Z <y>> 5)

i=1 zeX;,yeY; zeX, yey;

Now, U={u€eR": >} ygue)=0}and W;={ueR": 3 _\ u(x)=0} forie
{1,...,k} are vector subspaces of R" of dimension n — 1. Therefore the dimension of their
intersection is larger than n — (k + 1). Assuming that & < n — 1, the dimension of the
intersection is at least 1. Thus there exists a nonzero vector © € R™ such that u satisfies the
k + 1 linear equations:

Z uw(z) =0 and Vie{l,... k}, Zu:c =

2eV(G) zeX;

Plugging this u into we get ul Agu = — > ., u(z)? < 0, and plugging u into we
get ul Aqu = 0, which is a contradiction. ]

The bound £ > n — 1 in the theorem is also the best possible as K, is the disjoint union
of n — 1 stars.

Let us see what happens if instead of partitioning the edge set, we want to cover every
edge an odd number of times by complete bipartite graphs.

Theorem 13.4. Let G be the complete graph on n wvertices and let By, ..., By be complete
bipartite graphs on V(G) that cover each edge of G an odd number of times. Then k > |%].

Proof. In this proof, all the calculations are done over the field Z,. For an integer valued
matrix A, let ranky(A) denote the rank of A over Zy. Note that ranks(A) < rank(A).

Consider the rank of A over Zy. Let U ={u € Zj : }_ .y u(z) =0}. Then U is an
(n—1)-dimensional subspace of Z3 and Agu = u for every u € U. Hence, U C Im(A¢g), which
implies ranks(Ag) > n—1. Now consider u = (1,0,...,0) ¢ U, then Agu = (0,1,...,1) ¢ U
if n is even. Thus the image of As is larger than U, but then Im(Ag) is Z5 and therefore
ranks(Ag) = n.

Furthermore, for ¢ = 1,...,k, as B; is a complete bipartite graph, hence we have
ranks(Ap,) < 2 by Property[13.2] Using the inequality ranks(A+ B) < ranks(A)+ranks(B),
we can write:

k k
ranks(Ag) = ranks (Z ABZ.> < ZrankQ (Ap,) < 2k
i=1 i=1

Therefore k > o) if n is even and k > "T’l if n is odd. O

This theorem is also sharp for infinitely many values of n.

13.3 STRONGLY REGULAR GRAPHS

A graph G is strongly reqular, if G is regular and there exist two positive integers A and
w such that: (i) every pair of adjacent vertices have A common neighbors and (ii) every pair
of non-adjacent vertices have  common neighbors

If G has n vertices and is moreover d-regular, then G is said to be srg(n,d, \, ). For
example C5 is srg(5,2,0,1) and the Petersen graph is srg(10,3,0,1). We prove that other
than these two graphs, there can be only a few graphs that are srg(n,d,0,1).
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Theorem 13.5. If G is strongly reqular on at least three vertices with parameters A = 0 and
w=1, then G is either srg(5,2,0,1), srg(10,3,0,1), srg(50,7,0,1) or srg(3250,57,0,1).

Proof. Let G be a d-regular graph on n vertices. Assume G is srg(n,d, 0, 1).

First, we show that n = d? + 1. To do so we count the number of ”cherry-looking”
configurations, as defined by elements of the set S in the proof of Theorem [10.4], that is the
number of pairs (z,{y,z}), © # y # z such that zy,zz € F(G) and yz ¢ F(G). Each x
appears in exactly (g) such configurations, so |S| = n(g) Also, each pair {y, z} appears in
exactly one configuration if yz ¢ E(G), and in none otherwise, thus |S| = (3) — 2. From

2 2"
this, we get the equality n(g) = (Z) — %”, which gives n = d* + 1.

Let us denote A = Ag. Now consider A? and observe that for any =,y € V(G), A%(z,y)
is the number of common neighbors of z and y. In particular for any z € V(G), A(x,7)?* = d.
Let I € R™™ be the identity matrix, and let J € R™™" be the the matrix whose every entry

equals 1. Then, by the definition of A and because G is srg(n, d,0,1), we have:

A+ A=J+(d-1I (6)
We can use this identity to calculate the eigenvalues of A. Since G is d-regular, d is an
eigenvalue with eigenvector (1,...,1). Let u € R"™ be an eigenvector of A with eigenvalue

A # d. Then u is orthogonal to (1,...,1). Multiplying both sides of @ with u, we get:

Au+ Au= Ju+ (d—1)Iu
Now, Au = Au and A%u = A\?u. Also, Ju = (0, ...,0) because u is orthogonal to (1,...,1).
Finally, Iu = u. Therefore:
N+ M= (d—1)u,

from which A2 + A = d — 1. This equation has the two solutions: \;, = —=V4d=3 V2M—3 . Let us
denote n; the multiplicity of A; for i = 1,2. Then 1+n;+ny = n and Tr(A) = d+n3 A1 +nghs.
Also, by definition of A, Tr(A) = 0. Therefore, we have:

1 ( 1= 2d —n + 1)
n = — n — —
M Vid -3
Since n; and ny are integers, 2%1 must be an integer as well.

Consider as a first case that 2d —n + 1 = 0. Since n = d? + 1 also holds, we must have
d=0ord=2. If d=0 then n =1, and if d = 2, we have n = 5, thus G is srg(5,2,0, 1).

Consider now as a second case that 2d —n + 1 # 0. Then v/4d — 3 must be an integer
that divides 2d — n + 1 = 2d — d?. Let s*> = 4d — 3, where s is a positive integer. Then
d = 8 and s divides 2d — d?. But then s divides 16(2d — d?) as well, and 16(2d — d?) =
85 +24 — (s1+ 65 +9) = —s? +2s? + 15. Hence s divides 15 and thus s € {1, 3,5, 15} which
implies that d = 1,3,7,57. Therefore, G is either srg(2,1,0,1),srg(10,3,0,1),srg(50,7,0, 1)
or srg(3250,57,0,1). O]

There is a construction of a graph G that is srg(50, 7,0, 1), but it is open whether a graph
srg(3250, 57,0, 1) exists.
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