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Exercise 1 (Challenging: a comparison of variance). (From [Vock, Homework 2)
yva=1
Consider two estimators for the average response: %Z?:l Y=l and %Z?Zl f(i?‘ o and

suppose (- | -) is known and the potential outcomes are known/l]

(a) By assuming conditional exchangeability Y* 1 A; | L;, show that the first has lower
variance than the second (that is, we pay some penalty for not observing all subjects in
the data set being treated).

Hint: Show that the second estimator can be written as the first plus something else,
and then demonstrate that the two terms are uncorrelated.

(b) Compute the difference in variance between the estimators in [a] if A is randomized with
probability P(A=1) =3 (i.e. 7 =1)
Exercise 2 (Challenging: Doubly Robustness). Justify Theorem [}

Theorem 1 (Doubly robust estimator of E(Y | L, A = a)). If either the propensity model
m(a | l;7) or the outcome regression model Q(I, a; () is correctly specified, then

—E[E(Y | L, A=a)

I(A=a)Y _ I(A=aq) o
"] L) +<1 w<a|L;v>>Q(L’ )

Hints:

e Suppose first that 7(a | [;7) is correctly specified, but the outcome model Q(I, a; 3)

m(alLyy)

is mis-specified. Then, show that E { (1 — M) Q(L,a; ﬁ)} = 0 using the law of

total expectation.

I The first estimator is an estimator that is typically impossible to compute because all the counterfactuals
are not observed. However, in this exercise we have assumed that Y,=! is observed.



e Next, suppose that 7(a | [;) is mis-specified, but the outcome model Q(I,a;3) is

correctly specified. Then, show that E 7{((:';?){3/ — Q(L,a;p)}| = 0 using the law of

total expectation.

Exercise 3 (More on doubly robustness). Let A, L, Y be binary random variables. Consider
a logistic regression model

The maximum likelihood estimator of (81, B2, 53) is the solution of the score equations

(alogcw) dlog L(3) 5‘10g£(5))T

Y Y = 0 Y
861 862 863

where 8 = (81, 82, 83)".
(a) Argue that the likelihood £(f) takes the form

n

£(8) =[] pl—p) 1)

=1

_ AT
14e87X;

where p; = expit(57X;) and X; = (1, Ay, L;)T.

(b) Argue that the score equations can be written as

n eﬁTXi

Z Y;_l—Q—GBTXi :()7

=1
eBTXZ

2 A\ Y ) =0

2 b\ Y ) 7

(¢) Use the answer to part (b) to justify the following Lemma [I]

Lemma 1 (Consistent RCT estimator, even if mis-specified). The estimator £ >~ | expit(f;+
Bga + BgLi) based on MLE estimates from a logistic regression model

logit{Q(l,a; B)} = B1 + Baa + Bl

unbiasedly estimates Q(l,a) if A is randomly assigned, even if the logistic regression model
is mis-specified.
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Exercise 4 (Exploring the IPW estimator). (Based on Lab 4 of Maya L. Petersen and Laura
B. Balzer)

In this exercise we will implement the IPW and Hajek (or stabilized IP) estimators
numerically in R in order to explore their efficiency in cases with near violations of positiv-
ity. Consider treatment A and outcome Y with baseline covariates Wy, W5 in the dataset
stabilized_weights.csv, and suppose these satisfy the causal model below: The data was
generated by drawing n = 5000 i.i.d. samples from the distributions

1
Wl,WQ ~ Ber (p = 5)

A~ Ber (p = logit (1.3 — 3W; + 3W))

Y ~ Ber (p = logit™' (=2 — 2W; + 3W, + 34 + 2AW3))
Y%= ~ Ber (p =logit ' (=2 — 2W; + 3Wo +3-142-1-W>))

“=0 ~ Ber (p =logit (=2 — 2W; + 3W2+3-0+2-0- Wa)),

subject to the constraint
Y=Y (A=1)+YI(A=0).

The true effect is given by E[Y*=' —Y*=] ~ 0.26 (computed by evaluating - S (Y=Y
in a larger realization of the data with n’ = 100000) .

(a) Import the dataset stabilized_weights.csv into R and use the glm command to per-
form the following logistic regression for the treatment mechanism 7(A | L):

logit w(A | L;y) = vo + aWh + W, .

Plot the empirical cumulative distribution function of the IPW weights m and
use the weights to evaluate the IPW estimator o

. 1 — I(A; =a)Y;
Hrpw = ; m(Ai | Wha, Wausy)

(b) Compute fi;py with truncated weights @ +10- I(7 > 10) instead of the weights <
in part (a).



(c) Evaluate the stabilized IPW estimator given by Eq. [2| using the weights as in part (a).
1 n  I(A;=a)Y;
n Zi:l m(As|Lisy)

1 n I1(Aj=a) °
n 2im m(AilLisy)

(2)

ﬂSTIPW (a) =

(d) Estimate the variance of the estimators in parts (a)-(d) by drawing R = 5000 different
realizations of a population with n = 5000 i.i.d. individuals from the data generating
mechanism outlined above.
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