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Exercise 11.1
Consider two LTI filters L1 and L2, and let α ∈ C then the filter

L = αL1 + L2 (1)

is also an LTI filter.

Solution 11.1
Let {Xt}, {Yt} be sequences, and β ∈ C, then

L [β {Xt}+ {Yt}] = αL1 [β {Xt}+ {Yt}] + L2 [β {Xt}+ {Yt}]
= αβL1 [{Xt}] + αL1 [{Yt}] + βL2 [{Xt}] + L2 [{Yt}] (linearity of LTI filters)
= βL [{Xt}] + L [{Yt}] .

Now for time invariance,

L [B [{Xt}]] = αL1 [B [{Xt}]] + L2 [B [{Xt}]]
= B [αL1 [{Xt}]] + B [L2 [{Xt}]] (linearity of LTI filters)
= B [L [{Xt}]] .

Exercise 11.2
Consider two LTI filters L1 and L2. The filter L = L1L2, i.e. so that

L [{Xt}] = L1 [L2 [{Xt}]] (2)

is also an LTI filter.

Solution 11.2
Let {Xt}, {Yt} be sequences, and α ∈ C, then

L [α {Xt}+ {Yt}] = L1 [L2 [α {Xt}+ {Yt}]]
= L1 [αL2 [{Xt}] + L2 [{Yt}]]
= αL1 [L2 [{Xt}]] + L1 [L2 [{Yt}]]
= αL [{Xt}] + L [{Yt}] .

Now for time invariance

L [B [{Xt}]] = L1 [L2 [B [{Xt}]]]
= L1 [B [L2 [{Xt}]]]
= B [L1 [L2 [{Xt}]]] .
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Exercise 11.3
A digital filter L is an LTI filter if and only if we can write the filter output as a convolution:

L [{Xt}]u = ∆
∑
m∈T

hu−mXm (3)

for any u ∈ T .

Solution 11.3
(⇒) Assume that L is a linear time invariant filter, then notice that for any t ∈ T

Xt =
∑
m∈T

δt,mXm.

Therefore

L [{Xt}]u = L

[∑
m∈T

{δt,m}Xm

]
u

=
∑
m∈T

XmL [{δt,m}]u

=
∑
m∈T

XmB−u/∆ [L [{δt,m}]]0

=
∑
m∈T

XmL [{δt,m−u}]0 (time invariance)

= ∆
∑
m∈T

Xmhu−m.

(⇐) Now assume that there exists some sequence h such that

L [{Xt}]u = ∆
∑
m∈T

hu−mXm.

Then we have for α ∈ C, and for any u ∈ T

L [α {Xt}+ {Yt}]u = ∆
∑
m∈T

hu−m(αXm + Ym)

= α∆
∑
m∈T

hu−mXm +∆
∑
m∈T

hu−mYm

= αL [{Xt}]u + L [{Yt}]u .

Finally,

L [B [{Xt}]]u = ∆
∑
m∈T

hu−mXm−∆

= ∆
∑

m′∈T
hu−∆−m′Xm′ (m′ = m−∆)

= L [{Xt}]u−∆

= B [L [{Xt}]]u .

Thus we have L is an LTI filter.
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Exercise 11.4
Consider a stationary mean-zero time series {Xt}, with spectral representation

Xt =

∫ 1/2∆

−1/2∆

e2πiftdZ(f). (4)

Assume that we observe this time series at the points T = {∆, . . . ,∆n}, and we define the tapered discrete
Fourier transform by

Jh(f) =
∑
t∈T

htXte
−2πift (5)

where ‖ht‖22 = 1 (we assume the mean is known to be zero, so do no mean correction). Show that

Jh(f) =
1

∆

∫ 1/2∆

−1/2∆

H(f − f ′)dZ(f ′). (6)

Solution 11.4
We see from the definition that

Jh(f) =
∑
t∈T

htXte
−2πift

=
∑
t∈T

ht

∫ 1/2∆

−1/2∆

e2πif
′tdZ(f ′)e−2πift

=
1

∆

∫ 1/2∆

−1/2∆

∆
∑
t∈T

hte
2πi(f ′−f)tdZ(f ′)

=
1

∆

∫ 1/2∆

−1/2∆

H(f − f ′)dZ(f ′).

Exercise 11.5
If {Xt} is a stationary series, define {Yt} = (I− B)[{Xt}]. Is Yt stationary? If so, what is the spectral density
function of {Yt} in terms of the spectral density function of {Xt}?

Solution 11.5
Note that (I − B) is an LTI filter with impulse response in `1, so from Theorem 9.11 {Yt} is stationary. Now
we may use Theorem 9.12 to compute the spectral density function. In particular, the transfer function of this
filter is given by

H(f) = 1− e−2πif∆, (7)

and so

SY (f) =
∣∣1− e−2πif∆

∣∣2 SX (f)

= 2(1− cos(2πf∆))SX (f)

= 4 sin2(πf∆)SX (f) .

Exercise 11.6
For this question we fix ∆ = 1. In lecture 3, we claimed that AR(p) processes were time reversible. In other
words, If {Xt} is an AR(p) process, then if {Yt} is such that for all t ∈ Z, Yt = X−t, then Yt is an AR(p) process
with the same parameters as Xt. Specifically, if Xt had an AR representation

Xt =

p∑
j=1

φjXt−j + εt (8)
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then

Yt =

p∑
j=1

φjYt−j + ν̃t (9)

where ν̃t has the same distribution as εt. Prove this result.

Solution 11.6
Let φ0 = −1, and define

ν̃t =

p∑
j=0

φjYt−j .

All that remains is to show that ν̃t is Gaussian white noise with mean zero and variance σ2
ε . Clearly it is

Gaussian as it is a linear combination of Gaussians. Furthermore, E [Xt] = 0, so E [ν̃t] = 0 by linearity.

Now, we see that for all τ ∈ Z

γ(Y )
τ = E [YtYt+τ ]

= E [X−tX−t−τ ]

= γ
(X)
−τ

= γ(X)
τ .

Therefore SY (f) = SX (f) for all f ∈ R. Finally, we see that {ν̃t} results from applying an LTI filter to {Yt}.
In particular, from Lemma 9.13 and Theorem 9.12, we have

Sν̃ (f) =
∣∣Φ(e−2πif∆)

∣∣2 SY (f)

=
∣∣Φ(e−2πif∆)

∣∣2 SX (f)

= ∆σ2
ε

∣∣∣∣Φ(e−2πif∆)

Φ(e−2πif∆)

∣∣∣∣2
= ∆σ2

ε

where the penultimate line follows from Theorem 9.14. Therefore, we know that ν̃ is white noise with variance
σ2
ε .
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