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Exercise 11.1
Consider two LTI filters Ly and Lo, and let o € C then the filter

L= OéLl + L2
is also an LTT filter.

Solution 11.1
Let {X:}, {Y;} be sequences, and § € C, then

LIB{Xi} +{Yi}] = oLy [B{X:} +{Yi}] + L2 [B{X:} + {Vi}]
= af Ly [{X}] + aLli [{Yi}] + BLa [{ X} + Lo [{Y2}] (linearity of LTI filters)
= PLHX} + LHY: Y

Now for time invariance,

LBX}] = aly [B{X:}] + L2 [B[{X:}]]
=BlaL; {X}]] + B [L2 [{X¢}]] (linearity of LTI filters)
= BIL[{X:}]].

Exercise 11.2
Consider two LTT filters Ly and Ly. The filter L = L1 Lo, i.e. so that

L[{X¢}] = L1 [La [{ X+ }]]
is also an LTI filter.

Solution 11.2
Let {X:}, {Y:} be sequences, and a € C, then

Lla{X:} +{Yi}] = L1 [La [a {X:} + {Y3}]]
= Ly [oLy [{X:}] + La [{Y3}]]
= aly [L2 {X¢}]] + L1 [L2 [{Yi}]]
=aLl [{X;}] + L[{Y:}].

Now for time invariance

=Ly B[La {X:}]]]
=BI[L; [Ls [{X: ] -



Exercise 11.3
A digital filter L is an LTI filter if and only if we can write the filter output as a convolution:

LUXH, =A ) humX
meT

for any u € T.
Solution 11.3

(=) Assume that L is a linear time invariant filter, then notice that for any t € T

Xt = Z 5t,mX

meT

Therefore

L{X:}],

Z {5tm}X ‘|

meT

= Z XmL {6t,m}]u

meT

- Z X,,B~u/4 (L [{de.m ],

meT

= Z XonL [{0¢,m—u}ly (time invariance)
meT

=A Z XonPuem.-

meT

(<) Now assume that there exists some sequence h such that

{Xt - A Z hu m m

meT

Then we have for « € C, and for any v € T

Lio{X} +{Yi}, =A > hym(@Xpm + V)

meT
=AY By X + A humVm
meT meT

aL [{Xi}], + LY,

Finally,

[ {Xt _Azhum m—A

meT

=A Z hu—A—m’Xm’ (m' =m — A)
m'eT

=L[{Xt}],_a
=B[L[{X:}]],

Thus we have L is an LTI filter.



Exercise 11.4

Consider a stationary mean-zero time series {X;}, with spectral representation

1/2A 4
o= [ emitaz), (4)
—1/2A
Assume that we observe this time series at the points T = {A,..., An}, and we define the tapered discrete
Fourier transform by
In(f) = hXe > (5)
teT

2 . .
where ||h¢]|; = 1 (we assume the mean is known to be zero, so do no mean correction). Show that

1/2A
W) =5 [ HE -z, (6)

1/2A

Solution 11.4
We see from the definition that

Jh(f) _ Z htXte—%rift

teT
2a _
— Z ht/ 27rzf tdZ(f/)e—szft
teT 124
1/2A o
= 7/ Azhte%l(f “Ntaz(f
128 ter
1/2A
—5 [ HG- ).
1/2A

Exercise 11.5

If {X;} is a stationary series, define {Y;} = (I — B)[{X;}]. Is Y; stationary? If so, what is the spectral density
function of {Y;} in terms of the spectral density function of {X;}?

Solution 11.5

Note that (I — B) is an LTI filter with impulse response in ¢1, so from Theorem 9.11 {Y;} is stationary. Now
we may use Theorem 9.12 to compute the spectral density function. In particular, the transfer function of this
filter is given by

H(f) —1_ 6727r7,'fA7 (7)
and so
Sy(f):‘l —27rzfA| S ( )
=2(1 —cos(2mfA))Sx (f)
=4sin’(7fA)Sx (f).

Exercise 11.6

For this question we fix A = 1. In lecture 3, we claimed that AR(p) processes were time reversible. In other
words, If {X;} is an AR(p) process, then if {Y;} is such that for all ¢ € Z, Y; = X_, then Y; is an AR(p) process
with the same parameters as X;. Specifically, if X; had an AR representation

p
= ¢ Xej+e (8)

Jj=1



then

p
Yi=Y oY+ 7 (9)

=1
where 7; has the same distribution as €;. Prove this result.

Solution 11.6
Let ¢g = —1, and define

P
vy = Z ;Y.
=0

All that remains is to show that #; is Gaussian white noise with mean zero and variance o2. Clearly it is

Gaussian as it is a linear combination of Gaussians. Furthermore, E [X;] = 0, so E [I4] = 0 by linearity.

Now, we see that for all T € Z

W = E[Y;Yiy,]
= ]E [X,tXfth]

X
=)

=7

Therefore Sy (f) = Sx (f) for all f € R. Finally, we see that {Z;} results from applying an LTT filter to {Y;}.
In particular, from Lemma 9.13 and Theorem 9.12, we have

Sf/ (f) _ |®(6727TifA)|2 SY (f)
= |®(e=2m2)|" Sy (f)
‘(I)(e—%rifA) 2

D(e—2mifA)

where the penultimate line follows from Theorem 9.14. Therefore, we know that 7 is white noise with variance

2
oZ.



