

Time Series lecture 13

Non-Linear Time Series

Sofia Olhede

May 21, 2025

Lecture outline

1. Motivation

2. ARCH

3. Diagnostics

Motivation

- ▶ So far, we have looked at linear time series models.
- ▶ These models are very useful, but they are not always appropriate.
- ▶ In this lecture, we will look at non-linear time series models.
- ▶ In particular, we will focus on models that are used to handle volatility clustering.
- ▶ This is often motivated by financial time series .
- ▶ In this context, one typically looks at the log-returns of a stock price:

$$r_t = \log \left(\frac{X_t}{X_{t-1}} \right) = \log(X_t) - \log(X_{t-1})$$

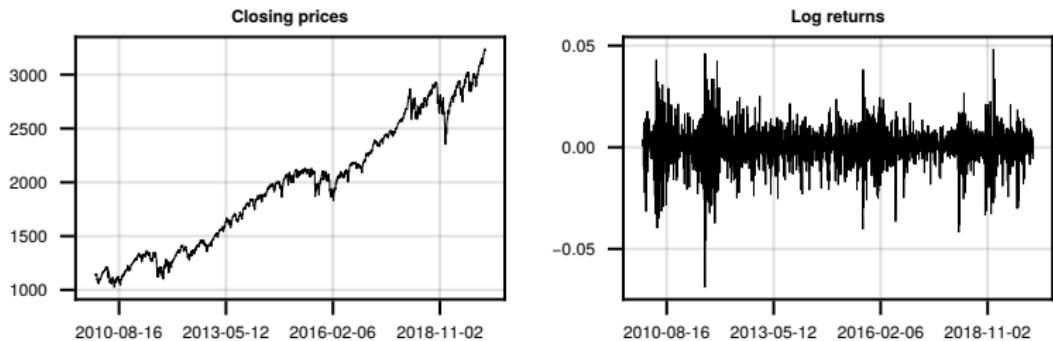


Figure: S&P 500 stock index prices from 01/01/2010 to 01/01/2020.

ACF and PACF

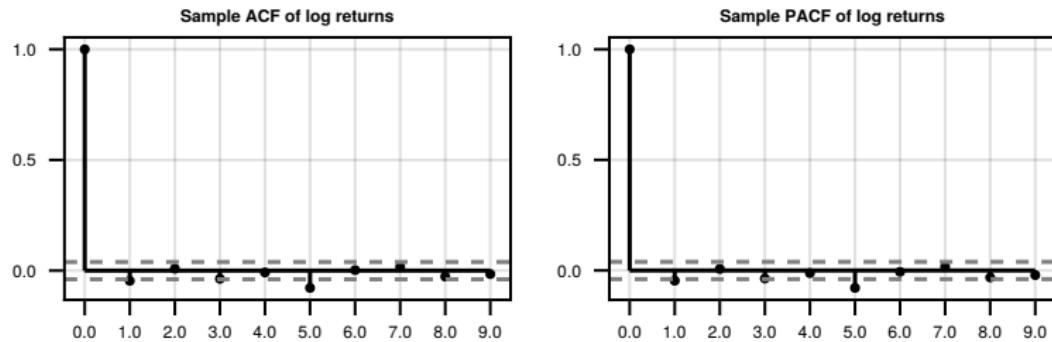


Figure: acf and pacf of the log-returns from 01/01/2010 to 01/01/2020.

ACF and PACF of the squared log-returns

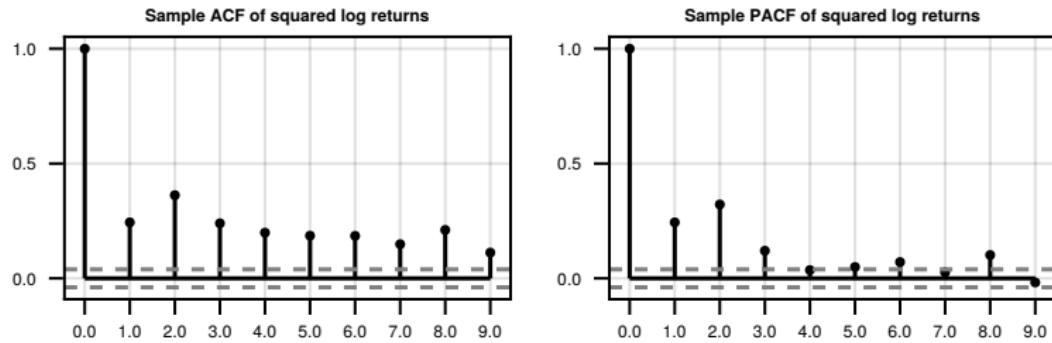


Figure: acf and pacf of the square of the log-returns from 01/01/2010 to 01/01/2020.

Marginal distribution of the log-returns

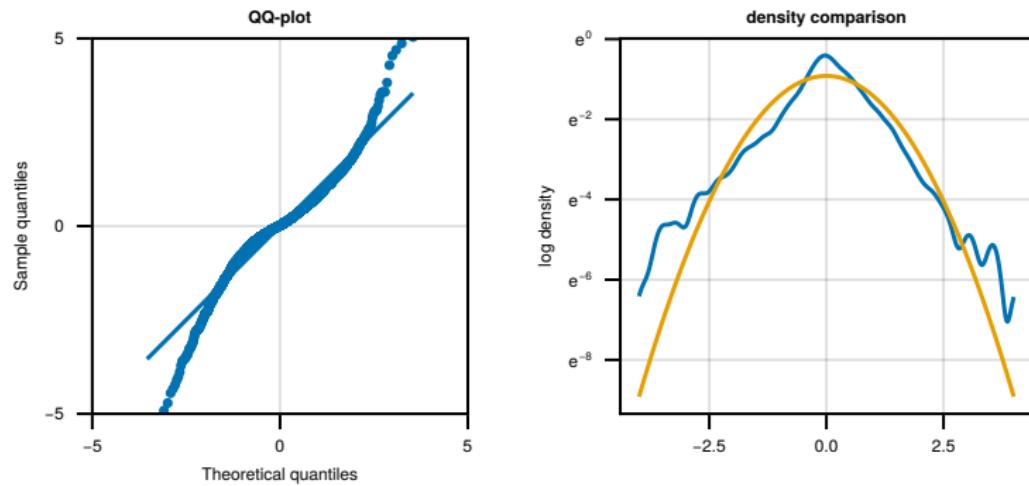


Figure: qq plot of standardised log returns (left) and log density (right) both compared to a standard normal.

ARCH

Definition 13.1 (ARCH models)

We will say that a time series $\{r_t\}$ is AutoRegressive Conditionally Heteroscedastic (ARCH) model if it takes the form

$$r_t = \sigma_t \varepsilon_t, \quad t \in \mathbb{Z}$$

where $\{\varepsilon_t\}$ is a white noise process with mean zero and variance one, and

$$\sigma_t^2 = \alpha_0 + \alpha_1 r_{t-1}^2$$

is the conditional variance of the process. The parameters $\alpha_0, \alpha_1 > 0$.

- ▶ So we are doing the same thing as before, but for the variance of the noise process, not the process itself.
- ▶ The idea is that this will allow the conditional variance to change over time.

ARCH

- ▶ Informally, we write the information available at time F_t .
- ▶ We are interested in the properties of r_t given F_{t-1} .
- ▶ The conditional mean is given by

$$\mathbb{E}[r_t | F_{t-1}] = \mathbb{E}[\sigma_t \varepsilon_t | F_{t-1}] = \sigma_t \mathbb{E}[\varepsilon_t | F_{t-1}] = 0$$

- ▶ We now compute the conditional variance

$$\begin{aligned}\text{Var}(r_t | F_{t-1}) &= \mathbb{E}[r_t^2 | F_{t-1}] - \mathbb{E}[r_t | F_{t-1}]^2 \\ &= \mathbb{E}[(\sigma_t \varepsilon_t)^2 | F_{t-1}] \\ &= \sigma_t^2 \mathbb{E}[\varepsilon_t^2 | F_{t-1}] \\ &= \sigma_t^2 \\ &= \alpha_0 + \alpha_1 r_{t-1}^2.\end{aligned}$$

ARCH: mean and variance

- ▶ We can also use this to compute unconditional expectations and variances.
- ▶ We can compute the unconditional expectation using the law of iterated expectation:

$$\begin{aligned}\mathbb{E}[r_t] &= \mathbb{E}[\mathbb{E}[r_t | F_{t-1}]] \\ &= \mathbb{E}[0] \\ &= 0\end{aligned}$$

ARCH: covariance

- We can also compute the marginal variance

$$\begin{aligned}\text{Var}(r_t) &= \mathbb{E}[r_t^2] - \mathbb{E}[r_t]^2 \\ &= \mathbb{E}[\mathbb{E}[r_t^2 | F_{t-1}]] - 0^2 \\ &= \mathbb{E}[\alpha_0 + \alpha_1 r_{t-1}^2] \\ &= \alpha_0 + \alpha_1 \text{Var}(r_{t-1})\end{aligned}$$

- Now assuming shift invariance, we can write

$$\text{Var}(r_t) = \frac{\alpha_0}{1 - \alpha_1}.$$

- We need $\alpha_1 < 1$ to get a stationary process.

- ▶ The autocorrelation for $\tau > 0$ is given by

$$\begin{aligned}\text{Cov}(r_t, r_{t+\tau}) &= \mathbb{E}[r_{t+\tau} r_t] - \mathbb{E}[r_{t+\tau}] \mathbb{E}[r_t] \\ &= \mathbb{E}[\sigma_{t+\tau} \varepsilon_{t+\tau} r_t] - 0^2 \\ &= \mathbb{E}[\mathbb{E}[\sigma_{t+\tau} \varepsilon_{t+\tau} r_t \mid F_{t+\tau-1}]] \\ &= \mathbb{E}[r_t \sigma_{t+\tau} \mathbb{E}[\varepsilon_{t+\tau} \mid F_{t+\tau-1}]] \\ &= 0\end{aligned}$$

- ▶ So actually, ARCH is a type of white noise!

Isserlis' Theorem

Theorem 13.2 (Isserlis' Theorem)

If (X_1, \dots, X_N) is a zero-mean multivariate normal random vector and N is even, then

$$\mathbb{E} \{X_1 \dots X_N\} = \sum_{p \in P_N} \prod_{\{i,j\} \in p} \text{Cov} \{X_i, X_j\}$$

where P_N is the set of all partitions of $\{1, \dots, N\}$ into pairs.

A special case of this theorem notes that for (X_1, \dots, X_4) zero-mean multivariate Gaussian:

$$\begin{aligned} \mathbb{E} (X_1 X_2 X_3 X_4) &= \mathbb{E} \{X_1 X_2\} \mathbb{E} \{X_3 X_4\} \\ &\quad + \mathbb{E} \{X_1 X_3\} \mathbb{E} \{X_2 X_4\} \\ &\quad + \mathbb{E} \{X_1 X_4\} \mathbb{E} \{X_2 X_3\} \end{aligned}$$

ARCH: higher order moments

- ▶ Often, financial time series exhibit “fat tails”, which means a kurtosis greater than 3.
- ▶ We can compute the fourth-order moments of the ARCH process

$$\begin{aligned}\mathbb{E} [r_t^4 | F_{t-1}] &= \mathbb{E} [\sigma_t^4 \varepsilon_t^4 | F_{t-1}] \\ &= \sigma_t^4 \mathbb{E} [\varepsilon_t^4 | F_{t-1}] \\ &= 3\sigma_t^4 \mathbb{E} [\varepsilon_t^2 | F_{t-1}]^2 \\ &= 3\sigma_t^4 \\ &= 3(\alpha_0 + \alpha_1 r_{t-1}^2)^2\end{aligned}$$

where Isserlis' Theorem gives the fourth moment.

ARCH: higher order moments

Again assuming shift invariance, the unconditional fourth moment is

$$\begin{aligned}
 \mathbb{E}[r_t^4] &= \mathbb{E}[\mathbb{E}[r_t^4 | F_{t-1}]] \\
 &= 3\mathbb{E}\left[\left(\alpha_0 + \alpha_1 r_{t-1}^2\right)^2\right] \\
 &= 3\left[\alpha_0^2 + 2\alpha_0\alpha_1\mathbb{E}[r_t^2] + \alpha_1^2\mathbb{E}[r_t^4]\right] \\
 &= 3\left[\alpha_0^2 + 2\alpha_0\alpha_1\frac{\alpha_0}{1-\alpha_1} + \alpha_1^2\mathbb{E}[r_t^4]\right]
 \end{aligned}$$

Re-arrangement gives

$$\mathbb{E}[r_t^4] = \frac{3\alpha_0^2(1+\alpha_1)}{(1-\alpha_1)(1-3\alpha_1^2)}$$

Which is finite if we require $0 \leq \alpha_1^2 < 1/3$.

Then the kurtosis is given by

$$\begin{aligned}\frac{\mathbb{E}[r_t^4]}{\text{Var}(r_t)^2} &= \frac{3\alpha_0^2(1+\alpha_1)}{(1-\alpha_1)(1-3\alpha_1^2)} \frac{(1-\alpha_1)^2}{\alpha_0^2} \\ &= 3 \frac{1-\alpha_1^2}{1-3\alpha_1^2}\end{aligned}$$

which is greater than 3 if $\alpha_1 > 0$.

The autocorrelation of the squares

- ▶ One can also show (see the exercises) that

$$\text{Corr}(r_{t+\tau}^2, r_t^2) = \alpha_1^{|\tau|}$$

- ▶ This means that we have a geometric decay in the autocovariance.
- ▶ This is sometimes fine, but we might want longer memory than this.

Parameter estimation

- ▶ The parameters of the ARCH model can be estimated using maximum likelihood estimation (MLE).
- ▶ The idea is to construct a likelihood function based on the conditional distribution of the data given the parameters.
- ▶ In general, you can write

$$L(\theta | r_1, \dots, r_n) = \prod_{t=1}^n f(r_t | r_{t-1}, \dots, r_1, \theta)$$

- ▶ This idea is central when we construct likelihood functions for time series models.

ARCH parameter estimation

- ▶ Remember that the arch model is

$$r_t \mid F_{t-1} \sim \mathcal{N}(0, \alpha_0 + \alpha_1 r_{t-1}^2)$$

- ▶ So we just need to deal with the base case
- ▶ We know the marginal variance, so this is fairly easy here
- ▶ Then we have the scheme

$$r_1 \sim \mathcal{N}\left(0, \frac{\alpha_0}{1 - \alpha_1}\right)$$

$$r_t \mid r_{t-1}, \dots, r_1 \sim \mathcal{N}(0, \alpha_0 + \alpha_1 r_{t-1}^2) \quad \text{for } 2 \leq t \leq n$$

So lets fit a model and see

- ▶ In this case we get $\alpha_0 = 6.663 \times 10^{-5}$, and $\alpha_1 = 0.2384$
- ▶ Lets look at a simulation from the fitted model

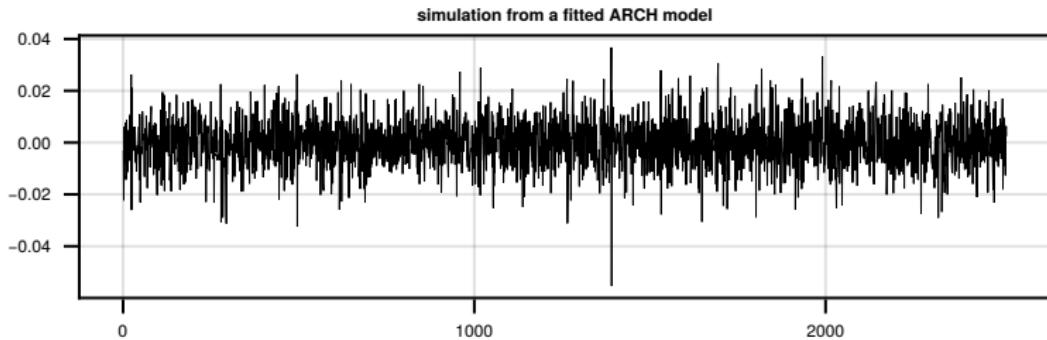


Figure: Simulated realisation of the ARCH process.

What about the ACF and PACF?

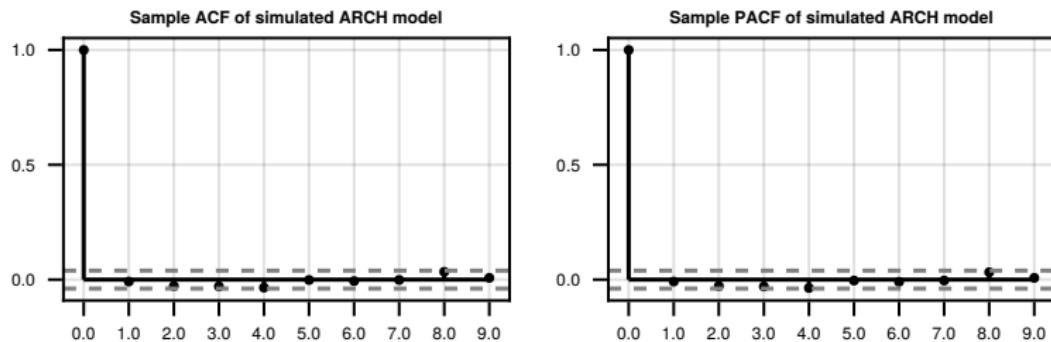


Figure: Simulated realisation of the ARCH process.

And the square?

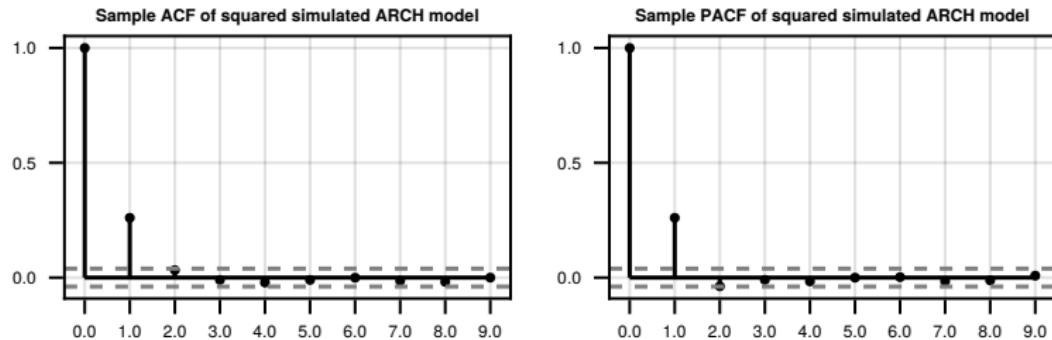


Figure: Simulated realisation of the ARCH process.

Recall the ACF and PACF of the squared log-returns

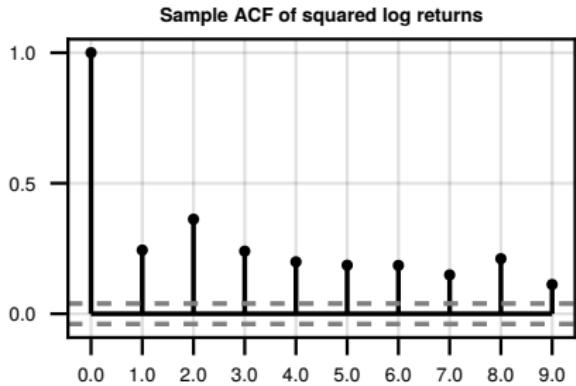
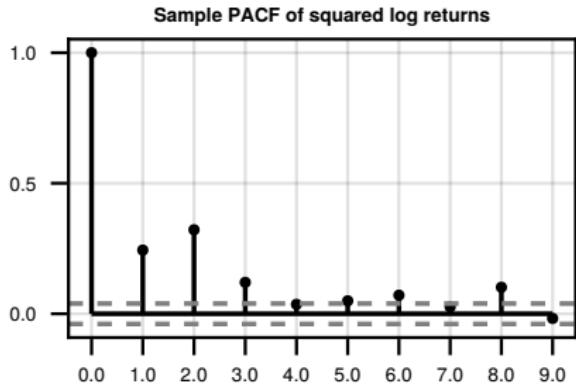


Figure: acf and pacf of the square of the log-returns from 01/01/2010 to 01/01/2020.

- They do not look similar.

What happened?

- Recall that the ARCH model is of the form

$$r_t = \sigma_t \varepsilon_t$$

$$\sigma_t = \sqrt{\alpha_0 + \alpha_1 r_{t-1}^2}$$

where ε_t is a white noise process.

- This means that if we are in a volatile period, we will have a large value of σ_t , and hence a large value of r_t on average.
- But, this does not persist if we get one small value of r_t by chance.

Solution 1: ARCH(p)

Definition 13.3 (ARCH(p) models)

We will say that a time series $\{r_t\}$ is an ARCH(p) model if it takes the form

$$r_t = \sigma_t \varepsilon_t, \quad t \in \mathbb{Z}$$

where $\{\varepsilon_t\}$ is a white noise process with mean zero and variance one, and

$$\sigma_t^2 = \alpha_0 + \alpha_1 r_{t-1}^2 + \dots + \alpha_p r_{t-p}^2$$

is the conditional variance of the process. The parameters satisfy $\alpha_0, \alpha_p > 0$ and $\alpha_j \geq 0$ for $1 \leq j < p$.

- ▶ The idea now is that we can have a longer memory of the past.
- ▶ But, this might require a lot of parameters.

Returning to the ACF and PACF of the squared log returns

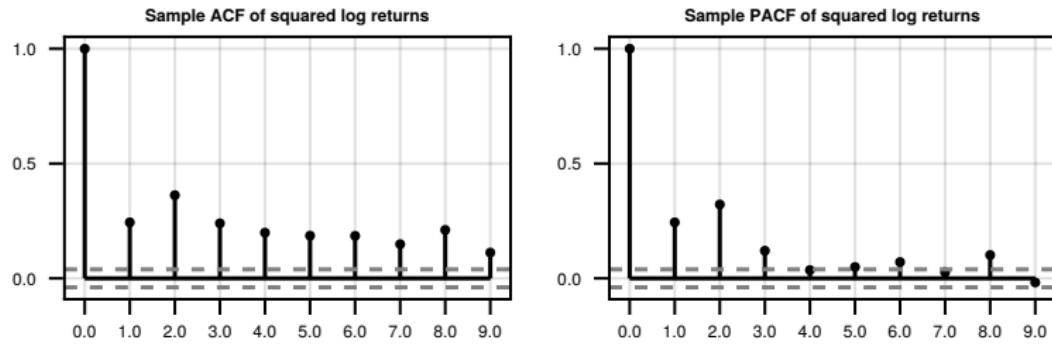


Figure: acf and pacf of the square of the log-returns from 01/01/2010 to 01/01/2020.

Solution 2: GARCH

Definition 13.4 (GARCH(p,q) models)

We will say that a time series $\{r_t\}$ is a GARCH(p,q) model if it takes the form

$$r_t = \sigma_t \varepsilon_t, \quad t \in \mathbb{Z}$$

where $\{\varepsilon_t\}$ is a Gaussian white noise process with mean zero and variance one, and

$$\sigma_t^2 = \alpha_0 + \alpha_1 r_{t-1}^2 + \dots + \alpha_p r_{t-p}^2 + \beta_1 \sigma_{t-1}^2 + \dots + \beta_q \sigma_{t-q}^2$$

is the conditional variance of the process. The parameters satisfy $\alpha_0, \alpha_p, \beta_q > 0$ and $\alpha_j, \beta_j \geq 0$ for $1 \leq j < p$.

- ▶ Often low order GARCH models are used, such as GARCH(1,1).
- ▶ This is far more parsimonious than the ARCH(p) model.

Properties of GARCH

- ▶ GARCH processes are also mean-zero and white noise (see the exercises)
- ▶ GARCH processes enable us to model more dependent volatility
- ▶ For a GARCH(1,1), $\alpha + \beta < 1$ implies stationarity
- ▶ Often in practice the parameters do sum to a value close to one
- ▶ We could replace the normal noise with some other iid mean-zero unit-variance noise
- ▶ For a GARCH(1,1), the fourth moment exists if and only if

$$3\alpha_1^2 + 2\alpha_1\beta_1 + \beta_1^2 < 1$$

Proposition 13.5

A GARCH(p, q) has a weakly stationary solution if and only if

$$\sum_{j=1}^p \alpha_j + \sum_{j=1}^q \beta_j < 1.$$

In this case, its variance is given by

$$\frac{\alpha_0}{1 - \sum_{j=1}^p \alpha_j - \sum_{j=1}^q \beta_j}$$

- ▶ In general, $\sum_{j=1}^p \alpha_j + \sum_{j=1}^q \beta_j < 1$ is sufficient for strict stationarity
- ▶ For certain classes of noise (including Gaussian)
 $\sum_{j=1}^p \alpha_j + \sum_{j=1}^q \beta_j = 1$ also has a strictly stationary solution, just not a weakly stationary one

Lets fit a GARCH(1,1) model

- ▶ In this case, we get

$$\alpha_0 = 3.686 \times 10^{-6}, \alpha_1 = 0.1713, \beta_1 = 0.7897$$

- ▶ Look at a simulation, this is much better!

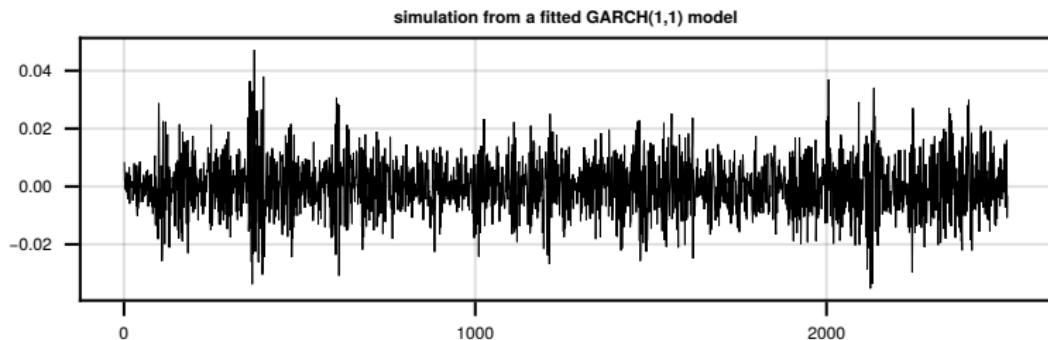


Figure: Simulated realisation of the GARCH(1,1) process.

Now lets check the ACF and PACF

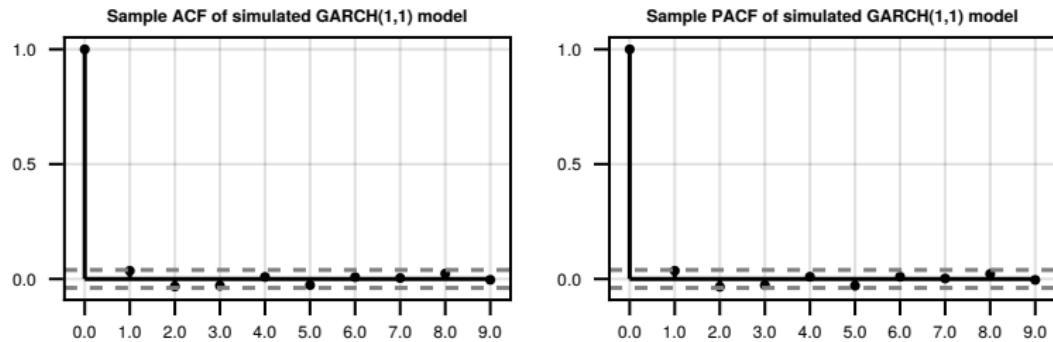


Figure: Simulated realisation of the GARCH(1,1) process.

And the square?

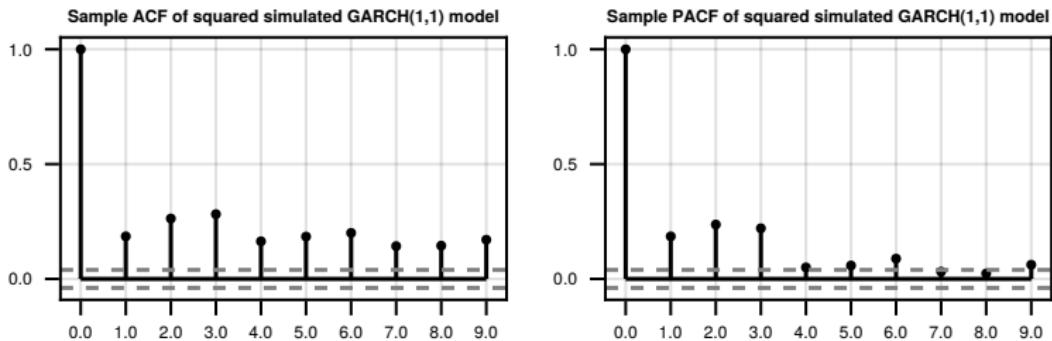


Figure: Simulated realisation of the GARCH(1,1) process.

- ▶ This looks much better!
- ▶ The ACF and PACF of the squared log-returns are now much more similar to the simulated GARCH(1,1) process.

Diagnostics

In sample prediction

- ▶ One thing we can do is look at whether the model can predict the variance of the data well.
- ▶ In particular, our model at a given time t is

$$r_t = \mathcal{N}(0, \sigma_t^2).$$

- ▶ Therefore, we could look at the confidence intervals $\pm 1.96\hat{\sigma}_t$.

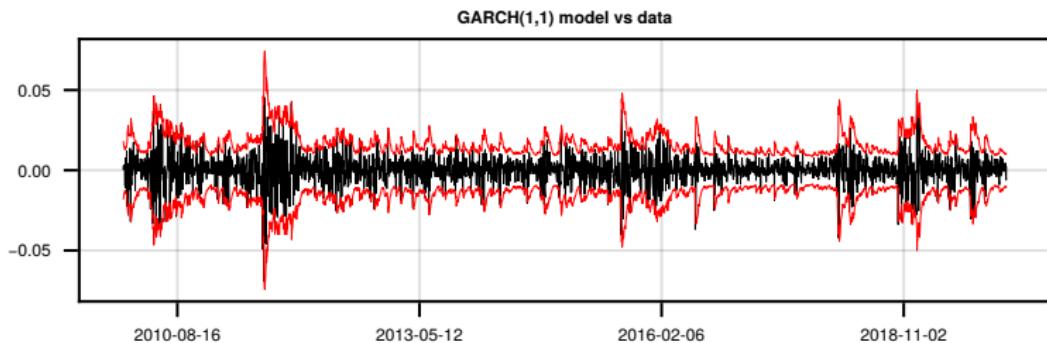


Figure: The log-returns with confidence intervals from the GARCH process.

Standardised residuals

- We can also look at the standardised residuals

$$\tilde{e}_t = \frac{r_t}{\sigma_t}.$$

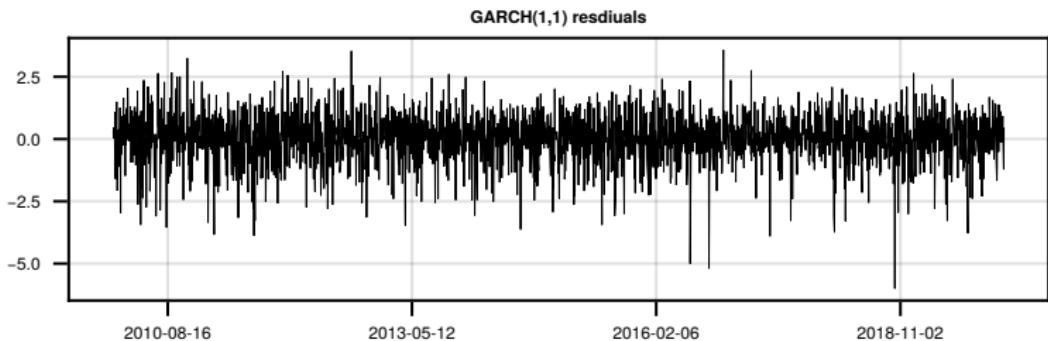


Figure: Residuals of the log-returns.

ACF and PACF of the residuals

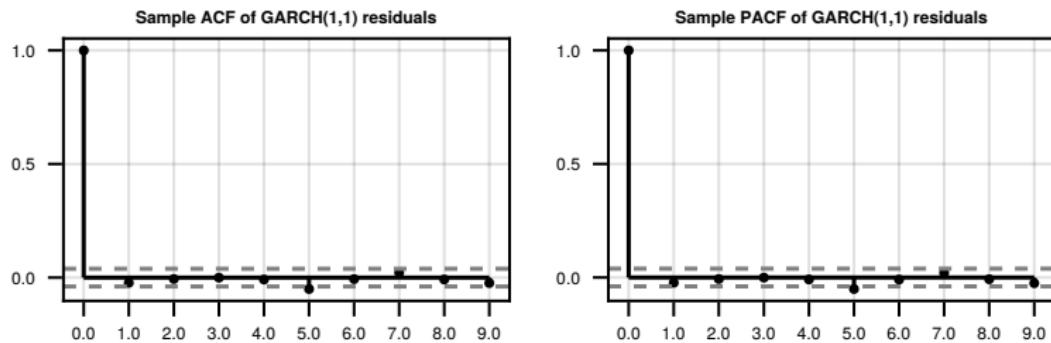


Figure: ACF and PACF of the residuals.

- We can see that the residuals are probably white noise.
- This is a good sign!

ACF and PACF of the squared residuals

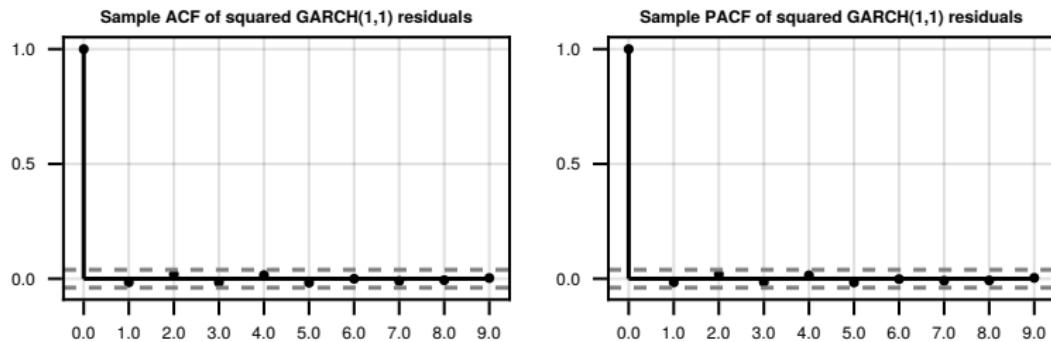


Figure: ACF and PACF of the squared residuals.

- We can see that the squared residuals are now behaving like white noise!

Residual distribution

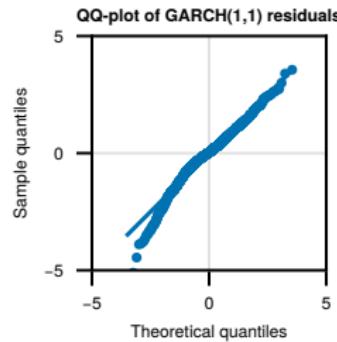


Figure: QQ plot of the residuals.

Combining GARCH and ARMA

- ▶ Since GARCH is a white noise process, we can simply make

$$X_t = \sum_{j=1}^p \phi_j X_{t-j} - \sum_{k=0}^q \theta_k r_{t-k}$$

where r_t is a GARCH(\tilde{p}, \tilde{q}) process and the θ s and ϕ s satisfy the usual conditions for an ARMA(p, q).

- ▶ We just need to be careful with the likelihood, since we cannot assume iid Gaussian errors any more!

Summary

- ▶ ARCH and GARCH models can capture changes over time and volatility “clusters”.
- ▶ We can model “outlier” behaviour and large shocks due to its large kurtosis.
- ▶ The GARCH model does not affect the correlation structure.
- ▶ GARCH allows us to model longer dependence in a parsimonious way.
- ▶ Positive and negative shocks affect the system in the same way.