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Motivation
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» So far, we have looked at linear time series models.
» These models are very useful, but they are not always appropriate.
» In this lecture, we will look at non-linear time series models.

» In particular, we will focus on models that are used to handle
volatility clustering.

» This is often motivated by financial time series .

» In this context, one typically looks at the log-returns of a stock price:

X
re = log | v | = log(X;) — log(Xe-1)
Xi-1
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Closing prices Log returns
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Figure: S&P 500 stock index prices from 01/01/2010 to 01/01/2020.
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ACF and PACF

Sample ACF of log returns

Sample PACF of log returns
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Figure: acf and pacf of the log-returns from 01/01/2010 to 01/01/2020.
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B .0
ACF and PACF of the squared log-returns
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1.0 — 1.0 —
0.5 — 0.5 —
0_0___:]_J_[_]::I_J_E_I:_T: o.o—:::l:I:I::'::':f:::'::.:
T T T T T T T T T T T T T
00 1.0 20 30 40 50 60 70 80 90 00 10 20 30 40 50 60 7.0 80 9.0

Figure: acf and pacf of the square of the log-returns from 01/01/2010 to
01,/01/2020.
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Marginal distribution of the log-returns

QQ-plot density comparison
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Figure: qq plot of standardised log returns (left) and log density (right) both
compared to a standard normal.
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ARCH

ARCH
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ARCH

Definition 13.1 (ARCH models)

We will say that a time series {r:} is AutoRegressive Conditionally
Heteroscedastic (ARCH) model if it takes the form

rt+ = O¢€t, teZ
where {e;} is a white noise process with mean zero and variance one, and
2 2
Oy =0+ Q1r_q
is the conditional variance of the process. The parameters g, a1 > 0.

» So we are doing the same thing as before, but for the variance of the
noise process, not the process itself.

» The idea is that this will allow the conditional variance to change over
time.
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ARCH

v

Informally, we write the information available at time F;.

v

We are interested in the properties of r; given Fi_1.

v

The conditional mean is given by

E[rt ‘ Ft—l] :E[O'tEt | Ft—l] = O'tE [81_— ’ Ft—l] =0

v

We now compute the conditional variance
Var (re | Fe—1) =E[rf | Fe—1] —E[re | Fea)?
=E [(UtEt)2 | Ft—l}
= JfIE [5? ] Ft,l]
=02

= oo+ alrtzfl.
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ARCH

ARCH: mean and variance

» We can also use this to compute unconditional expectations and
variances.

» We can compute the unconditional expectation using the law of
iterated expectation:

Elr] =E[E[re | Fe-1]]
=E|[0]
=0
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ARCH

ARCH: covariance

» We can also compute the marginal variance

Var(r) = E [rtz] —E [rt]2
=E[E[r?|F1]] —0?
=E [ao + alr,_?_l]
= ag + ag Var(re—1)

» Now assuming shift invariance, we can write

aQ

Var (r;) = oy

» We need a1 < 1 to get a stationary process.
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ARCH

» The autocorrelation for 7 > 0 is given by

Cov (re, re4r) = Elresrre] — Efrer] E[re]
=E [0t+—r€t+rft] - 0?
=K [E [Ut+75t+'rrt | Ft+T—1]]
=E[roe Eleetr | Fear-1]]
=0

» So actually, ARCH is a type of white noise!

Sofia Olhede (EPFL) Time Series May 21, 2025 14 /42



Isserlis’” Theorem

Theorem 13.2 (Isserlis” Theorem)

If (X1,...Xn) is a zero-mean multivariate normal random vector and N is
even, then
E{X;...Xn} = > ] Cov{X:,Xj}

pEPN {ij}ep

where Py is the set of all partitions of {1,..., N} into pairs.

A special case of this theorem notes that for (Xi,...Xs,) zero-mean
multivariate Gaussian:

E (X1 XoX3X4) = E {X1 )X} E {X3Xa )}
+E {X1X3} E {X2X4}
+E {X1X4} E {X2X3}
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ARCH: higher order moments

» Often, financial time series exhibit “fat tails”, which means a kurtosis
greater than 3.

» We can compute the fourth-order moments of the ARCH process
E[r} | Fe—1] =E [ofey | Fe—1]
—O't]E[Et ‘ Ft 1]
= 3UtE [5t | Fee 1}
= 307}

=3 (ao + a1r3_1)2

where Isserlis’ Theorem gives the fourth moment.
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ARCH: higher order moments

Again assuming shift invariance, the unconditional fourth moment is

E[rf] =E[E [} ] Fe1]]
=3E {(ao + Oélff—l)z}
=3 [ozo + 20001 E [ft] +aiE [rt]]

o m]

=3 [ao + 20901 T

Re-arrangement gives

] = 302 (1+ az)
(1—a1) (1-30})

E [rf'

Which is finite if we require 0 < a3 < 1/3.
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ARCH

Then the kurtosis is given by

E[rf]  33(1+a1) (1-a1)
Var(rt)2 (]. — 041) (1 — 30&%) Clg
_ 3 1-— oz%
1— 304%

which is greater than 3 if a; > 0.
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ARCH

The autocorrelation of the squares

» One can also show (see the exercises) that

22y _ 7
Corr (i, rf) = oy

» This means that we have a geometric decay in the autocovariance.

» This is sometimes fine, but we might want longer memory than this.
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ARCH

Parameter estimation

v

The parameters of the ARCH model can be estimated using
maximum likelihood estimation (MLE).

The idea is to construct a likelihood function based on the conditional
distribution of the data given the parameters.

v

v

In general, you can write

n

LO|r,....r) =[] frelre-1,...,r,0)
t=1

v

This idea is central when we construct likelihood functions for time
series models.
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ARCH

ARCH parameter estimation

Remember that the arch model is

v

re| Fro1 ~ N (O, oo + alrtz,l)

v

So we just need to deal with the base case

v

We know the marginal variance, so this is fairly easy here

Then we have the scheme

r1~N<0, o >
11—

re rt_1,...,r1NN(O,O[O—FalrE,l) for2<t<n

v
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ARCH

So lets fit a model and see

» In this case we get ap = 6.663 x 107>, and a; = 0.2384

» Lets look at a simulation from the fitted model

simulation from a fitted ARCH model
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Figure: Simulated realisation of the ARCH process.
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What about the ACF and PACF?

Sample ACF of simulated ARCH model Sample PACF of simulated ARCH model
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Figure: Simulated realisation of the ARCH process.
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And the square?

Sample ACF of squared simulated ARCH model Sample PACF of squared simulated ARCH model
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Figure: Simulated realisation of the ARCH process.
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Recall the ACF and PACF of the squared log-returns

Sample ACF of squared log returns Sample PACF of squared log returns
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Figure: acf and pacf of the square of the log-returns from 01/01/2010 to
01/01/2020.

» They do not look similar.
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What happened?

» Recall that the ARCH model is of the form

re = O0t€t

or=1/ag+aoar?

where €; is a white noise process.

» This means that if we are in a volatile period, we will have a large
value of oy, and hence a large value of r; on average.

» But, this does not persist if we get one small value of r; by chance.
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Solution 1: ARCH(p)

Definition 13.3 (ARCH(p) models)

We will say that a time series {r;} is an ARCH(p) model if it takes the
form
rt = O¢€t, teZ

where {;} is a white noise process with mean zero and variance one, and

af =g + alrt24 Fooo —|—aprt27p

is the conditional variance of the process. The parameters satisfy
ag,ap >0and o >0 for 1 < j < p.

» The idea now is that we can have a longer memory of the past.

» But, this might require a lot of parameters.
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ARG
Returning to the ACF and PACF of the squared log returns

Sample ACF of squared log returns Sample PACF of squared log returns
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Figure: acf and pacf of the square of the log-returns from 01/01/2010 to
01,/01/2020.
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Solution 2: GARCH

Definition 13.4 (GARCH(p,q) models)

We will say that a time series {r:} is a GARCH(p,q) model if it takes the
form
It = OtEt, teZ

where {e;} is a Gaussian white noise process with mean zero and variance
one, and

2 2 2 2 2
of=ao+a1rf g +...Foprf ,+ P07 1+ ...+ Bq0i,

is the conditional variance of the process. The parameters satisfy
ag, ap,Bq > 0and o, 3 > 0 for 1 < j < p.

» Often low order GARCH models are used, such as GARCH(1,1).
» This is far more parsimonious than the ARCH(p) model.
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Properties of GARCH

v

GARCH processes are also mean-zero and white noise (see the
exercises)

v

GARCH processes enable us to model more dependent volatility
For a GARCH(1,1), a+ 8 < 1 implies stationarity

Often in practice the parameters do sum to a value close to one

v

v

v

We could replace the normal noise with some other iid mean-zero
unit-variance noise

For a GARCH(1,1), the fourth moment exists if and only if

v

302 + 20181 + B < 1
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Proposition 13.5

A GARCH(p,q) has a weakly stationary solution if and only if

P q
Z aj + Z Bj < L.
j=1 j=1

In this case, its variance is given by

aQ

1- Zf:l €y = Zﬁ:l B

> In general, 3°7_; a; + 37, B; < 1is sufficient for strict stationarity

» For certain classes of noise (including Gaussian)
Zf:l oj + Z}q:l Bj = 1 also has a strictly stationary solution, just not
a weakly stationary one
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Lets fit a GARCH(1,1) model

» In this case, we get

ap = 3.686 x 107°, a; = 0.1713, 1 = 0.7897

» Look at a simulation, this is much better!

simulation from a fitted GARCH(1,1) model
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Figure: Simulated realisation of the GARCH(1,1) process.
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Now lets check the ACF and PACF

Sample ACF of simulated GARCH(1,1) model Sample PACF of simulated GARCH(1,1) model
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Figure: Simulated realisation of the GARCH(1,1) process.
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And the square?

Sample ACF of squared simulated GARCH(1,1) model Sample PACF of squared simulated GARCH(1,1) model
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Figure: Simulated realisation of the GARCH(1,1) process.

» This looks much better!

» The ACF and PACF of the squared log-returns are now much more
similar to the simulated GARCH(1,1) process.
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Diagnostics
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In sample prediction

» One thing we can do is look at wether the model can predict the
variance of the data well.
» In particular, our model at a given time t is

re =N (0,07).

» Therefore, we could look at the confidence intervals +1.965;.

GARCH(1,1) model vs data
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Figure: The log-returns with confidence intervals from the GARCH process.
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Standardised residuals

» We can also look at the standardised residuals

re
e = —.

Ot

GARCH(1,1) resdiuals
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Figure: Residuals of the log-returns.
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ACF and PACF of the residuals

Sample ACF of GARCH(1,1) residuals Sample PACF of GARCH(1,1) residuals
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Figure: ACF and PACF of the residuals.

» We can see that the residuals are probably white noise.

» This is a good sign!
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ACF and PACF of the squared residuals

Sample ACF of squared GARCH(1,1) residuals Sample PACF of squared GARCH(1,1) residuals
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Figure: ACF and PACF of the squared residuals.

» We can see that the squared residuals are now behaving like white
noise!
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Residual distribution

Sofia Olhede (EPFL)

Sample quantiles

Figure:

QQ-plot of GARCH(1,1) residuals
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Theoretical quantiles

QQ plot of the residuals.
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Combining GARCH and ARMA

» Since GARCH is a white noise process, we can simply make

P q
Xe = ¢iXej— > Okre«
=1 k=0

where r; is a GARCH(p, §) process and the s and ¢s satisfy the
usual conditions for an ARMA(p, q).

» We just need to be careful with the likelihood, since we cannot
assume iid Gaussian errors any more!
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Summary

v

ARCH and GARCH models can capture changes over time and
volatility “clusters”.

v

We can model “outlier” behaviour and large shocks due to its large
kurtosis.

The GARCH model does not affect the correlation structure.

\4

v

GARCH allows us to model longer dependence in a parsimonious way.

v

Positive and negative shocks affect the system in the same way.
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