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Motivation

I So far, we have looked at linear time series models.
I These models are very useful, but they are not always appropriate.
I In this lecture, we will look at non-linear time series models.
I In particular, we will focus on models that are used to handle

volatility clustering.
I This is often motivated by financial time series .
I In this context, one typically looks at the log-returns of a stock price:

rt = log

(
Xt

Xt−1

)
= log(Xt)− log(Xt−1)

Sofia Olhede (EPFL) Time Series May 21, 2025 4 / 42



Motivation

2010-08-16 2013-05-12 2016-02-06 2018-11-02

1000

1500

2000

2500

3000

Closing prices

2010-08-16 2013-05-12 2016-02-06 2018-11-02

−0.05

0.00

0.05

Log returns

Figure: S&P 500 stock index prices from 01/01/2010 to 01/01/2020.
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Motivation

ACF and PACF
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Figure: acf and pacf of the log-returns from 01/01/2010 to 01/01/2020.
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Motivation

ACF and PACF of the squared log-returns
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Figure: acf and pacf of the square of the log-returns from 01/01/2010 to
01/01/2020.
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Motivation

Marginal distribution of the log-returns

Theoretical quantiles
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Figure: qq plot of standardised log returns (left) and log density (right) both
compared to a standard normal.
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ARCH

Definition 13.1 (ARCH models)
We will say that a time series {rt} is AutoRegressive Conditionally
Heteroscedastic (ARCH) model if it takes the form

rt = σtεt , t ∈ Z

where {εt} is a white noise process with mean zero and variance one, and

σ2
t = α0 + α1r2

t−1

is the conditional variance of the process. The parameters α0, α1 > 0.

I So we are doing the same thing as before, but for the variance of the
noise process, not the process itself.

I The idea is that this will allow the conditional variance to change over
time.
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ARCH

ARCH
I Informally, we write the information available at time Ft .
I We are interested in the properties of rt given Ft−1.
I The conditional mean is given by

E [rt | Ft−1] = E [σtεt | Ft−1] = σtE [εt | Ft−1] = 0

I We now compute the conditional variance

Var (rt | Ft−1) = E
[
r2
t | Ft−1

]
− E [rt | Ft−1]

2

= E
[
(σtεt)

2 | Ft−1
]

= σ2
t E

[
ε2

t | Ft−1
]

= σ2
t

= α0 + α1r2
t−1.
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ARCH

ARCH: mean and variance

I We can also use this to compute unconditional expectations and
variances.

I We can compute the unconditional expectation using the law of
iterated expectation:

E [rt ] = E [E [rt | Ft−1]]

= E [0]
= 0
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ARCH

ARCH: covariance

I We can also compute the marginal variance

Var (rt) = E
[
r2
t
]
− E [rt ]

2

= E
[
E
[
r2
t | Ft−1

]]
− 02

= E
[
α0 + α1r2

t−1
]

= α0 + α1 Var (rt−1)

I Now assuming shift invariance, we can write

Var (rt) =
α0

1 − α1
.

I We need α1 < 1 to get a stationary process.
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ARCH

I The autocorrelation for τ > 0 is given by

Cov (rt , rt+τ ) = E [rt+τ rt ]− E [rt+τ ]E [rt ]

= E [σt+τεt+τ rt ]− 02

= E [E [σt+τεt+τ rt | Ft+τ−1]]

= E [rtσt+τE [εt+τ | Ft+τ−1]]

= 0

I So actually, ARCH is a type of white noise!
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ARCH

Isserlis’ Theorem

Theorem 13.2 (Isserlis’ Theorem)
If (X1, . . .XN) is a zero-mean multivariate normal random vector and N is
even, then

E {X1 . . .XN} =
∑

p∈PN

∏
{i,j}∈p

Cov {Xi ,Xj}

where PN is the set of all partitions of {1, . . . ,N} into pairs.

A special case of this theorem notes that for (X1, . . .X4, ) zero-mean
multivariate Gaussian:

E (X1X2X3X4) = E {X1X2}E {X3X4}
+ E {X1X3}E {X2X4}
+ E {X1X4}E {X2X3}
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ARCH

ARCH: higher order moments

I Often, financial time series exhibit “fat tails”, which means a kurtosis
greater than 3.

I We can compute the fourth-order moments of the ARCH process

E
[
r4
t | Ft−1

]
= E

[
σ4

t ε
4
t | Ft−1

]
= σ4

t E
[
ε4

t | Ft−1
]

= 3σ4
t E

[
ε2

t | Ft−1
]2

= 3σ4
t

= 3
(
α0 + α1r2

t−1
)2

where Isserlis’ Theorem gives the fourth moment.
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ARCH

ARCH: higher order moments

Again assuming shift invariance, the unconditional fourth moment is

E
[
r4
t
]
= E

[
E
[
r4
t | Ft−1

]]
= 3E

[(
α0 + α1r2

t−1
)2]

= 3
[
α2

0 + 2α0α1E
[
r2
t
]
+ α2

1E
[
r4
t
]]

= 3
[
α2

0 + 2α0α1
α0

1 − α1
+ α2

1E
[
r4
t
]]

Re-arrangement gives

E
[
r4
t
]
=

3α2
0 (1 + α1)

(1 − α1)
(
1 − 3α2

1
)

Which is finite if we require 0 ≤ α2
1 < 1/3.
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ARCH

Then the kurtosis is given by

E
[
r4
t
]

Var (rt)
2 =

3α2
0 (1 + α1)

(1 − α1)
(
1 − 3α2

1
) (1 − α1)

2

α2
0

= 3 1 − α2
1

1 − 3α2
1

which is greater than 3 if α1 > 0.
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ARCH

The autocorrelation of the squares

I One can also show (see the exercises) that

Corr
(
r2
t+τ , r2

t
)
= α

|τ |
1

I This means that we have a geometric decay in the autocovariance.
I This is sometimes fine, but we might want longer memory than this.
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ARCH

Parameter estimation

I The parameters of the ARCH model can be estimated using
maximum likelihood estimation (MLE).

I The idea is to construct a likelihood function based on the conditional
distribution of the data given the parameters.

I In general, you can write

L(θ | r1, . . . , rn) =
n∏

t=1
f (rt |rt−1, . . . , r1, θ)

I This idea is central when we construct likelihood functions for time
series models.
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ARCH

ARCH parameter estimation

I Remember that the arch model is

rt | Ft−1 ∼ N
(
0, α0 + α1r2

t−1
)

I So we just need to deal with the base case
I We know the marginal variance, so this is fairly easy here
I Then we have the scheme

r1 ∼ N
(

0, α0
1 − α1

)
rt | rt−1, . . . , r1 ∼ N

(
0, α0 + α1r2

t−1
)

for 2 ≤ t ≤ n
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ARCH

So lets fit a model and see

I In this case we get α0 = 6.663 × 10−5, and α1 = 0.2384
I Lets look at a simulation from the fitted model
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0.00
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0.04
simulation from a fitted ARCH model

Figure: Simulated realisation of the ARCH process.
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ARCH

What about the ACF and PACF?
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Figure: Simulated realisation of the ARCH process.
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ARCH

And the square?
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Figure: Simulated realisation of the ARCH process.

Sofia Olhede (EPFL) Time Series May 21, 2025 24 / 42



ARCH

Recall the ACF and PACF of the squared log-returns

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0

0.0

0.5

1.0

Sample ACF of squared log returns

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0

0.0

0.5

1.0

Sample PACF of squared log returns

Figure: acf and pacf of the square of the log-returns from 01/01/2010 to
01/01/2020.

I They do not look similar.
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ARCH

What happened?

I Recall that the ARCH model is of the form

rt = σtεt

σt =
√

α0 + α1r2
t−1

where εt is a white noise process.
I This means that if we are in a volatile period, we will have a large

value of σt , and hence a large value of rt on average.
I But, this does not persist if we get one small value of rt by chance.
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ARCH

Solution 1: ARCH(p)

Definition 13.3 (ARCH(p) models)
We will say that a time series {rt} is an ARCH(p) model if it takes the
form

rt = σtεt , t ∈ Z

where {εt} is a white noise process with mean zero and variance one, and

σ2
t = α0 + α1r2

t−1 + . . .+ αpr2
t−p

is the conditional variance of the process. The parameters satisfy
α0, αp > 0 and αj ≥ 0 for 1 ≤ j < p.

I The idea now is that we can have a longer memory of the past.
I But, this might require a lot of parameters.
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ARCH

Returning to the ACF and PACF of the squared log returns
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Figure: acf and pacf of the square of the log-returns from 01/01/2010 to
01/01/2020.
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ARCH

Solution 2: GARCH

Definition 13.4 (GARCH(p,q) models)
We will say that a time series {rt} is a GARCH(p,q) model if it takes the
form

rt = σtεt , t ∈ Z

where {εt} is a Gaussian white noise process with mean zero and variance
one, and

σ2
t = α0 + α1r2

t−1 + . . .+ αpr2
t−p + β1σ

2
t−1 + . . .+ βqσ

2
t−q

is the conditional variance of the process. The parameters satisfy
α0, αp , βq > 0 and αj , βj ≥ 0 for 1 ≤ j < p.

I Often low order GARCH models are used, such as GARCH(1,1).
I This is far more parsimonious than the ARCH(p) model.
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ARCH

Properties of GARCH

I GARCH processes are also mean-zero and white noise (see the
exercises)

I GARCH processes enable us to model more dependent volatility
I For a GARCH(1,1), α+ β < 1 implies stationarity
I Often in practice the parameters do sum to a value close to one
I We could replace the normal noise with some other iid mean-zero

unit-variance noise
I For a GARCH(1,1), the fourth moment exists if and only if

3α2
1 + 2α1β1 + β2

1 < 1
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ARCH

Proposition 13.5
A GARCH(p,q) has a weakly stationary solution if and only if

p∑
j=1

αj +

q∑
j=1

βj < 1.

In this case, its variance is given by
α0

1 −
∑p

j=1 αj −
∑q

j=1 βj

I In general,
∑p

j=1 αj +
∑q

j=1 βj < 1 is sufficient for strict stationarity
I For certain classes of noise (including Gaussian)∑p

j=1 αj +
∑q

j=1 βj = 1 also has a strictly stationary solution, just not
a weakly stationary one
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ARCH

Lets fit a GARCH(1,1) model
I In this case, we get

α0 = 3.686 × 10−6, α1 = 0.1713, β1 = 0.7897

I Look at a simulation, this is much better!
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simulation from a fitted GARCH(1,1) model

Figure: Simulated realisation of the GARCH(1,1) process.
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ARCH

Now lets check the ACF and PACF
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Figure: Simulated realisation of the GARCH(1,1) process.
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ARCH

And the square?
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Figure: Simulated realisation of the GARCH(1,1) process.

I This looks much better!
I The ACF and PACF of the squared log-returns are now much more

similar to the simulated GARCH(1,1) process.
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Diagnostics
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Diagnostics

In sample prediction
I One thing we can do is look at wether the model can predict the

variance of the data well.
I In particular, our model at a given time t is

rt = N
(
0, σ2

t
)
.

I Therefore, we could look at the confidence intervals ±1.96σ̂t .
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GARCH(1,1) model vs data

Figure: The log-returns with confidence intervals from the GARCH process.
Sofia Olhede (EPFL) Time Series May 21, 2025 36 / 42



Diagnostics

Standardised residuals

I We can also look at the standardised residuals

ẽt =
rt
σt

.

2010-08-16 2013-05-12 2016-02-06 2018-11-02

−5.0

−2.5

0.0

2.5

GARCH(1,1) resdiuals

Figure: Residuals of the log-returns.
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Diagnostics

ACF and PACF of the residuals
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Figure: ACF and PACF of the residuals.

I We can see that the residuals are probably white noise.
I This is a good sign!
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Diagnostics

ACF and PACF of the squared residuals
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Figure: ACF and PACF of the squared residuals.

I We can see that the squared residuals are now behaving like white
noise!
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Diagnostics

Residual distribution

Theoretical quantiles
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Figure: QQ plot of the residuals.
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Diagnostics

Combining GARCH and ARMA

I Since GARCH is a white noise process, we can simply make

Xt =

p∑
j=1

φjXt−j −
q∑

k=0
θkrt−k

where rt is a GARCH(p̃, q̃) process and the θs and φs satisfy the
usual conditions for an ARMA(p, q).

I We just need to be careful with the likelihood, since we cannot
assume iid Gaussian errors any more!
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Diagnostics

Summary

I ARCH and GARCH models can capture changes over time and
volatility “clusters”.

I We can model “outlier” behaviour and large shocks due to its large
kurtosis.

I The GARCH model does not affect the correlation structure.
I GARCH allows us to model longer dependence in a parsimonious way.
I Positive and negative shocks affect the system in the same way.
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