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AR & Dependence

Consider an AR(1) model:

Yt = φYt−1 + εt , t ∈ Z

We have ρ0 = 1, ρ1 = φ, ρ2 = φ2, . . .

I Thus Yt and Yt−2 are correlated even if we do not write Yt in terms
of Yt−2.

I This follows because Yt is specified in terms of Yt−1 and as Yt−1 is
given in terms of Yt−2 there is correlation.

I We would therefore like to calculate the covariance of Yt and Yt−2
given the effect of the intervening variable Yt−1.
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Partial correlation

Partial correlation
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Partial correlation

Partial correlation

Say that we have two random variables X and Y .
I We might want to understand their correlation in order to understand

something about their dependence.
I However, if they both depend on some other random variables, say

Z = (Z1, . . . ,Zn)
T , then this correlation may be spuriously generated

by these confounders.
I One simple way to try and avoid this is partial correlation, which aims

to remove this effect.
I Partial correlation is computed by fitting the best linear model for X

given Z , and also for Y given Z , and then looking at the correlation
of the residuals.
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Partial correlation

Linear prediction

In order to define partial correlation, we need to define the best linear
predictor.

Definition 12.1
Consider a collection of mean-zero random variables X1, . . . ,Xn,Y . The
best linear predictor of Y from X1, . . . ,Xn is

PX1,...,Xn(Y ) =
n∑

j=1
βjXj (12.1)

such that the βjs minimise

E
[
(Y − PX1,...,Xn(Y ))2

]
.
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Partial correlation

Partial correlation: formal definition

Definition 12.2 (Partial correlation)
Consider two random variables X and Y , and some confounding random
variables Z = (Z1, . . . ,Zn)

T , then the partial correlation of X and Y given
Z is

ρXY •Z = Corr (X − PZ (X),Y − PZ (Y )) (12.2)

where PZ (X) denotes the best linear predictor of X from Z .

I If X ,Y ,Z are jointly Gaussian then

ρXY •Z = E [Corr (X ,Y | Z)] .

I In fact, in the Gaussian case,

ρXY •Z
a.s.
= Corr (X ,Y | Z) .
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Partial correlation
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Figure: Comparison of correlation and partial correlation for some variables X and
Y with some other variable Z acting as a confounder. Accounting for Z removes
all correlation between X and Y , so standard correlation is misleading here!
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Partial autocorrelation

Partial autocorrelation
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Partial autocorrelation

Partial autocorrelation

I Partial autocorrelation is simply the partial correlation of the time
series at time t with the time series at time t + τ accounting for all
values in between, i.e.

αk = ρXY •Z (12.3)

if we set X = Xt , Y = Xt+τ and Z = (Xt+1, . . . ,Xt+τ−1)
T .

I Pictorially

Xt , Xt+1, . . . ,Xt+τ−1︸ ︷︷ ︸
confounders

, Xt+τ .
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Partial autocorrelation

Partial autocorrelation function

Definition 12.3
Consider a mean-zero stationary time series {Xt}. Denote the best linear
predictors of Xt and Xt+τ from the intervening values

X̂t = PXt+1,...,Xt+τ−1(Xt),

X̂t+τ = PXt+1,...,Xt+τ−1(Xt+τ ).

The partial autocorrelation function ατ is given by

ατ = Corr
(

Xt+τ − X̂t+τ ,Xt − X̂t
)

(12.4)

I Here we are measuring the correlation after removing the linear
effects of the intervening values.
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Partial autocorrelation

Reformulation as linear regression

Consider a mean-zero stationary time series {Xt}. Fix t = 0 and let τ ∈ Z,
τ ≥ 0, the best linear predictor of Xt+τ from Xt , . . . ,Xt+τ−1 takes the
form

PX0,...,Xτ−1(Xτ ) =
τ∑

j=1
ατ,jXτ−j . (12.5)

I One can show that ατ,τ = ατ .
I This representation is useful as we can construct a system of

equations to solve for ατ,τ .
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Partial autocorrelation

Relation to the ACF

For any τ > 0, for k ∈ {1, . . . , τ}

γk = E [Xτ−kXτ ] = E
[
Xτ−kPX0,...,Xτ−1(Xτ )

]
=

τ∑
j=1

ατ,jE [Xτ−kXτ−j ]

=
τ∑

j=1
ατ,jγk−j

and so

ρk =
τ∑

j=1
ατ,jρk−j . (12.6)

Thus we have equations to relate the ACF and the PACF.
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Partial autocorrelation

ACF and PACF of ARMA models

For causal and invertible ARMA(p, q) models, the ACF and PACF have
the properties

AR(p) MA(q) ARMA(p, q)
ACF Tails off Cuts off after lag q Tails off
PACF Cuts off after lag p Tails off Tails off

Table: ACF and PACF properties of ARMA models.
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Partial autocorrelation

Computation via Durbin-Levinson recursions

One can show that the Durbin-Levinson recursions can be used to solve for
ατ,τ given the ACF:

α1,1 = ρ1,

ατ,τ =
ρτ −

∑τ−1
j=1 ατ−1,jρτ−j

1 −
∑τ−1

j=1 ατ−1,jρj
,

ατ,j = ατ−1,j − ατ,τατ−1,τ−j .

I This can be used either with the theoretical or estimated ACF.
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Partial autocorrelation

Example time series

I A time series model has ρ1 = 2/5, ρ2 = −1/20 and ρ3 = −1/8.
I Find the PACF at lags 1,2 and 3.
I We use the Durbin-Levinson recursions. These give

α1,1 = ρ1 =
2
5

α2,2 =
ρ2 − α1,1ρ1
1 − α1,1ρ1

= −1
4

α2,1 = α1,1 − α2,2α1,1 = 1/2
α3,3 = . . . = 0

We don’t know about αk,k but the latter indicates that this may be
an AR(2) model.
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Partial autocorrelation

Example time series continued

I In fact the AR(2) of

Yt =
1
2Yt−1 −

1
4Yt−2 + εt

has the same PACF to the process that we noted (for the first three
lags).

I Note that α22 is equal to the coefficient of Yt−2 in the model.

Sofia Olhede (EPFL) Time Series May 14, 2025 17 / 39



Partial autocorrelation

Partial autocorrelation of an AR model

Proposition 12.4
For an AR(p), we have

ατ = 0, ∀τ > p.

I Furthermore, it can be shown that asymptotically the estimated
partial autocorrelation at lags greater than p have mean 0 and
variance 1/n, where n is the sample size.
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Partial autocorrelation
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Figure: The ACF (left) and PACF (right) of model 1.
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Partial autocorrelation
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Figure: The ACF (left) and PACF (right) of model 2.
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Partial autocorrelation
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Figure: The ACF (left) and PACF (right) of model 3.
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Partial autocorrelation

Solutions

The true models were as follows:
I model 1: AR(2)

→ φ1 = 0.6 and φ2 = 0.2
I model 2: ARMA(1, 2)

→ φ1 = 0.6, φ2 = 0.2 and θ1 = −0.6
I model 3: MA(1)

→ θ1 = −0.6
in all cases the noise had variance 1.

Sofia Olhede (EPFL) Time Series May 14, 2025 22 / 39



Diagnostics for general ARIMA models

Diagnostics for general ARIMA models
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Diagnostics for general ARIMA models

Residuals
Model checking is usually based on residuals. Informally they are the
difference between the observed and the fitted values.
Definition 12.5 (Standardized residual)
Consider observations of a time series {Xt}. Say that for a given model we
have a fitted value X̂t at time t. The residuals are

et = Xt − X̂t

and the standardized residuals are

ẽt = et/
√
Var (et).

I Do the residuals have a constant zero mean?
I Is their variance constant wrt t (homoscedasticity)?
I Are they uncorrelated in t?
I Are they Gaussian?
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Diagnostics for general ARIMA models

Residuals for an AR(1)

Example 12.6
For an AR(1) model with parameters φ and σ, the fitted value at time t is
φXt−1. Therefore, the residual (if we know the true model) is given by

et = Xt − φXt−1 = εt .

This is the original noise process, meaning that the residuals have constant
zero mean, constant variance and are uncorrelated. If the noise process
was Gaussian, then the residuals are Gaussian.
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Diagnostics for general ARIMA models

Checking the mean

We make a plot of {(t, ẽt)}. There should be no trends, and they should
be close to zero.
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Figure: Left: centered residuals. Right: residuals with a trend.
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Diagnostics for general ARIMA models

Checking the variance

We make a plot of {(t, ẽt)}. The variance should be constant.
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Figure: Left: constant variance. Right: non-constant variance.
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Diagnostics for general ARIMA models

Checking the Gaussianity
To check the Gaussianity of the residuals we can use a Q-Q plot. This is a
plot of the quantiles of the residuals against the quantiles of a normal
distribution. If the residuals are Gaussian then the points should lie on a
straight line. Note that this only checks marginal Gaussianity.
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Figure: Left: Gaussian residuals. Right: student residuals.
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Diagnostics for general ARIMA models

Checking the autocorrelation

I To check the correlation we can consider the correlation between the
residuals at different lags.

I Recall that the autocorrelation at lag k is given by

r̂τ = ρ̂(e)τ =

∑n−τ
t=1 (et+τ − ē) (et − ē)∑n

t=1 (et − ē)2 .

I We plot the corellelogram for the residuals. Under the assumption of
white noise we compare to (−1.96/

√
n, 1.96/

√
n).
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Diagnostics for general ARIMA models

Testing the autocorrelation

I We can also, more realistically, try to test that a long range of
correlations are zero:

H0 : ρ1 = ρ2 = · · · = ρm = 0

for some choice of m, against the alternative that at least one
autocorrelation in that range is non-zero.

Proposition 12.7 (Box-Pierce)
We introduce the Box-Pierce statistic

Qm = n
m∑

τ=1
r̂2
τ

Under H0 this is approximately χ2
m−p−q for an ARMA(p, q).
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Diagnostics for general ARIMA models

Improving the Box-Pierce test

In practice this approximation is inaccurate. Thus we chose to use the
modified Box-Pierce statistic, usually called the Ljung–Box statistic.

Proposition 12.8 (Ljung-Box)

Qm = n(n + 2)
m∑

τ=1

r̂2
τ

n − τ

Under H0 this is a χ2
m−p−q for an ARMA(p, q).

I m has to be chosen by the practitioner.
I Often a series of m values are tested and displayed in a plot.
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Diagnostics for general ARIMA models
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Figure: Left are the diagnostic plots for the true model; right are the diagnostic
plots for an AR(2) model fitted to the same data.
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Diagnostics for general ARIMA models

Evaluating model fit: the dangers of R2

I We might think that residual variance can help with model selection.
We define the R2 statistic to be

R2 = 1 − s2
e

s2
y

I Some care is needed; more parameters ⇒ R2 improves.
I Stochastic processes are not perfectly predictable. Therefore there is

a limit. Consider an AR(1) model.
I The process variance is σ2/

(
1 − φ2), thus

R2 = 1 −
σ2 (1 − φ2)

σ2 = φ2

As |φ| < 1 say with φ = 0.4 we get R2 = 0.16. Does not look good.
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Model selection

Model selection
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Model selection

Model Comparison

There are formal methods of comparing models.
I Most come from information theory, and correspond to information

criteria.
These criteria are defined for models with k parameters

I For ARMA k = p + q + 1, AR and MA plus noise variance.
Information criterion are regularly used in any statistics context to
compare models.
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Model selection

A model with smaller AIC is deemed better

AIC(θ) = −2 log L(θ | y) + 2k

where L is the likelihood function.
I AIC overestimates p in the ARMA model.

Hurvich and Tsai (1989) suggested a corrected Aikake Information
Criterion that works better in practice:

AICC(θ) = AIC(θ) +
2k2 − 2k
n − k − 1

I AICC and AIC become equivalent as n diverges.
The Bayesian Information Criterion (BIC) is given by

BIC(θ) = −2 log L(θ | y) + k log(n)

Sofia Olhede (EPFL) Time Series May 14, 2025 36 / 39



Model selection

Box–Jenkins method

The Box-Jenkins methodology is a framework for building models:
I starts by identifying reasonable values for p, d and q,
I then estimates the parameters of the proposed ARIMA model,
I checks diagnostics to verify that the model fitting is appropriate,
I the subsequent step might be forecasting or some other inference.
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Model selection

Model identification

For choosing d
I Plot the data and look for non-stationarity.
I If the data looks non-stationary, plot differences of the data.
I Hopefully low orders of differencing are enough.

For choosing p and q (using the differenced data)
I Look at the acf and pacf.
I Sharp drop in the ACF at lag q suggests an MA(q) model.
I Sharp drop in the PACF at lag p suggests an AR(p) model.
I No sharp drops suggests an ARMA model.
I Very slow decay suggests non-stationary or some other issue.
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