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Forecasting

What is forecasting

The purpose of time series analysis is often to forecast future values based
on the data collected up to the present. To do this we

1. assume the form of the model;
2. estimate the parameters of the model;
3. use the assumed model structure and the estimated parameters to

form predictions.
For now, we assume that the model structure and the parameters are
known, and predict h lags ahead, i.e. Xn+h based on X1, . . . ,Xn.

I h > 0 is called the lead or the horizon
I n is called the origin
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Forecasting

Conditional expectation

Let g(X1, . . . ,Xn) be an estimator of Xn+h based on X1, . . . ,Xn. We
assess its performance with the prediction mean squared error

Pn
n+h := E

[
(Xn+h − g(X1, . . . ,Xn))

2
]
. (10.1)

Lemma 10.1

The conditional expectation

g(X1, . . . ,Xn) = E [Xn+h | X1, . . . ,Xn]

minimizes the prediction mean square error for Xn+h based on X1, . . . ,Xn.
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Forecasting

Proof of Lemma 10.1.
For Y a real-valued random variable with µ = E [Y ], we have

MSE (c) = E
[
(Y − c)2

]
= E

[
(Y − µ+ µ− c)2

]
= E

[
(Y − µ)2

]
+ (µ− c)2

= Var (Y ) + (µ− c)2 .

Thus µ = argminc MSE (c). Then,

MSE (g(X1, . . . ,Xn)) = E
[
(Xn+h − g(X1, . . . ,Xn))

2
]

= E
[
E
[
(Xn+h − g(X1, . . . ,Xn))

2 | X1, . . . ,Xn
]]

will be minimised at g(X1, . . . ,Xn) = E [Xn+h|X1, . . . ,Xn].
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Forecasting

Best linear predictor

Recall the definition of linear predictor:

Definition 10.2
The best linear predictor of Xn+h based on X1, . . . ,Xn is the linear function

Xn
n+h = PX1,...,Xn(Xn+h) =

n∑
j=1

βjXj

that minimizes the prediction mean square error.

I For Gaussian time series, the conditional expectation is linear in the
data.

I But in general, the conditional expectation will be a nonlinear
function of the data.

For simplicity, we restrict attention to linear predictors.
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Forecasting

Example: Gaussian AR(1)

Example 10.3

Suppose Xt is such that Xt = φXt−1 + εt , with εt
iid∼ N (0, σ2).

For h > 0, the best linear predictor of Xn+h based on X1, . . . ,Xn is

Xn
n+h = E [Xn+h | X1, . . . ,Xn]

= E [φXn+h−1 + εn+h | X1, . . . ,Xn]

= φhXn

Since Xt is stationary, |φ| < 1 and Xn
n+h → 0 as h → ∞.

I Xn
n+h reverts to the mean of the process.

I This is a general property of stationary ARMA models.
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Forecasting
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Figure: Predictions of an AR(1) process with φ = 0.8 and σ2 = 1.
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Forecasting

Example: Gaussian MA(1)

Example 10.4

Suppose Xt is such that Xt = µ+ εt − θεt−1, with εt
iid∼ N (0, σ2).

For h > 0, we get

Xn
n+h = µ+ E [εn+h | X1, . . . ,Xn]− θE [εn+h−1 | X1, . . . ,Xn]

= µ− θE [εn+h−1 | X1, . . . ,Xn] ,

as εt are strictly uncorrelated with X1, . . . ,Xn for t > n.
For h > 1, this reduces to

Xn
n+h = µ.
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Forecasting

Prediction equations
The best linear predictor depends only on the second-order properties.

Theorem 10.5

For a zero-mean stationary process {Xt}, Xn
n+h is found by solving for

β1, . . . , βn the prediction equations

E
[(

Xn+h − Xn
n+h

)
Xk

]
= 0, k = 1, . . . , n.

The βj are then given by the solution of the system of equations
γ0 γ1 . . . γn−1
γ1 γ0 . . . γn−2
...

... . . . ...
γn−1 γn−2 . . . γ0



β1
β2
...
βn

 =


γn+h−1
γn+h−2

...
γh

 . (10.2)

I The proof for the non-zero mean processes is an exercise.
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Forecasting

Application to ARMA processes

Rewriting the prediction equations (10.2) in matrix form

Γnβ = γ[h],

we get that if Γn is invertible

Xn
n+h = γT

[h]Γ
−1
n X and Ph

n+h = γ0 − γT
[h]Γ

−1
n γ[h]

with X = (X1, . . . ,Xn)
T.

I Γn is invertible for invertible ARMA models, but not in all other
cases. However the best prediction Xn

n+h is always unique.
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Forecasting

Comments on prediction equations

I The calculation of the solution Xn
n+h = γT

[h]Γ
−1
n X is inefficient when n

is large because the n × n matrix Γn must be inverted.
I Recursive algorithms that do not require any matrix inversion have

been proposed: the Durbin-Levinson and the innovations algorithms
are discussed in Shumway and Stoffer (2000, §3.5).

I Theorem 10.5 is valid for any stationary process. In the next section,
we focus on predictions for causal ARMA models.
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Prediction for causal ARMA models

Prediction for causal ARMA models
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Prediction for causal ARMA models

Prediction based on linear representation
We use the linear process representation and the implicit definition from
an ARMA equation.

Theorem 10.6

The best linear predictor Xn
n+h for Xn+h in a causal ARMA process with

general linear representation
∑∞

j=0 ψjεt−j is

Xn
n+h =

∞∑
j=h

ψjεn+h−j = ψhεn + ψh+1εn−1 + · · · .

The corresponding prediction mean square error is σ2 ∑h−1
j=0 ψ

2
j .

I Xn
n+h can be evaluated from its linear representation, with unrealised

innovations εn+1, . . . , εn+h ≡ 0.
I The proof is an exercise for this week
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Prediction for causal ARMA models

Truncated predictions for ARMA models

In practice it is simpler to predict based on Φ(B)Xt+h = Θ(B)εt+h than to
obtain the general linear representation.
The residuals ε̂t and fitted values/predictions X̃n

t are obtained recursively

ε̂t =


p∑

i=1
φi X̃n

t−i + (θ1ε̂t−1 + · · ·+ θqε̂t−q) , t = 1, . . . , n,

0, otherwise .

X̃n
t+h =


p∑

i=1
φi X̃n

t+h−i −
q∑

j=1
θj ε̂t+h−j , t + h > n,

Xt+h, t + h = 1, . . . , n,
0, t + h ≤ 0.

(10.3)

I The forecast error is estimated by the expression in Theorem 10.6.
I Note that X̃n

t is an approximation as we had to truncate.
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Prediction for causal ARMA models

Comments

The best linear predictor for a causal process with mean µ has form

Xn
n+h = µ+

∞∑
j=h

ψjεn+h−j .

For a causal ARMA model ψj → 0 exponentially fast:

Xn+h → µ as h → ∞.

Likewise for large h, the prediction error

E
[(

Xn+h − Xn
n+h

)2
]
= σ2

h−1∑
j=0

ψ2
j → σ2

∞∑
j=0

ψ2
j = γ0, h → ∞.
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Prediction for integrated processes

Prediction for integrated processes
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Prediction for integrated processes Truncated point forecast

Truncated point forecasts example for ARIMA(3,1,1)

Example: ARIMA(3,1,1)

We have (
1 − φ1B − φ2B2 − φ3B3) (1 − B)Xt = (1 − θ1B) εt ,

which we can rewrite as

Xt =(1 + φ1)Xt−1 − (φ1 − φ2)Xt−2 − (φ2 − φ3)Xt−3 − φ3Xt−4︸ ︷︷ ︸
AR

+ εt − θ1εt−1︸ ︷︷ ︸
MA

.

We will deal with the AR and MA part as we did for ARMA models:
I AR part: replace Xt−1, . . . ,Xt−4 with Xn

t−1, . . . ,Xn
t−4.

I MA part: replace εt with the residuals if t ≤ n, and otherwise set to 0.
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Prediction for integrated processes Truncated point forecast

Example: ARIMA(3,1,1) (cont.)
Let ε̂n be the last observed residual (similar to eq. (10.3)). For the
one-step ahead forecast we get

Xn
n+1 = (1 + φ1)Xn − (φ1 − φ2)Xn−1 − (φ2 − φ3)Xn−2 − φ3Xn−3 − θ1ε̂n.

For t > n + 1, the best linear predictor for Xn
n+h based on X1, . . . ,Xn is

then

Xn
t = (1 + φ1)Xn

t−1 − (φ1 − φ2)Xn
t−2 − (φ2 − φ3)Xn

t−3 − φ3Xn
t−4.

I We can generalize this example to any ARIMA(p, d , q) model.
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Prediction for integrated processes General case: falling back to ARMA

General case: falling back to ARMA

Let {Xt} be ARIMA(p, d , q), i.e.

Φ(B)(1 − B)dXt = Θ(B)εt .

Then Zt = ∇dYt is ARMA(p, q)

Zt =

p∑
j=1

φjZt−j + εt −
q∑

j=1
θjεt−j .

We know how to predict Zn+h based on Z1, . . . ,Zn, and we can use them
to predict Xn+h based on X1, . . . ,Xn:

∇dXn
n+h = Zn

n+h.
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Prediction for integrated processes General case: falling back to ARMA

predicting X based on Z
Suppose that Xt ARIMA(p, 1, q). Then we have Xn+h − Xn+h−1 = Zn+h
and

Xn+h = Xn+h−1 + Zn+h = · · · = Xn +
h−1∑
j=0

Zn+h−j , h > 1,

giving

Xn
n+h = Xn +

h−1∑
j=0

Zn
n+h−j , h > 1.

If {Zt} has mean α 6= 0,Zn
n+h → α as h → ∞, and Xn

n+h ≈ Xn + αh for h
large.

I In general for ARIMA models Pn
n+h → ∞ as h → ∞.

I For SARIMA models with d = D = 1 and α = 0, it can be shown
that the forecast will be linear and seasonal in h.
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Prediction uncertainty

Prediction uncertainty
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Prediction uncertainty

Source of uncertainty

There are three components of uncertainty in predictions:
1. model uncertainty,
2. estimation uncertainty,
3. innovation uncertainty.
I We assume that the model is known and that the parameters are

estimated without error. This is equivalent to removing the first two
sources of uncertainty.

I There are techniques (bootstrap) to account for the model and
estimation uncertainties, but we will not cover them in this course.
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Prediction uncertainty

Innovation uncertainty for ARMA models

Let en(h) be the h-step ahead forecast error for Xn+h based on X1, . . . ,Xn.
Then using theorem 10.6 we have

en(h) = Xn+h − Xn
n+h =

h−1∑
j=0

ψjεn+h−j .

We have E [en(h)] = 0 and

Var (en(h)) = σ2
h−1∑
j=0

ψ2
j → γ0, h → ∞.
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Prediction uncertainty

Prediction intervals

If we consider a Gaussian process, we can construct a 1 − α prediction
interval for Xn+h based on X1, . . . ,Xn as

Xn
n+h ± z1−α/2 Var (en(h))1/2 ,

where zα is the αth percentile of the Gaussian distribution.

t

0 20 40

X
ₜ

−2.5

0.0

2.5

observations predictions 95% P.I.
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