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Forecasting
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What is forecasting

The purpose of time series analysis is often to forecast future values based
on the data collected up to the present. To do this we

1. assume the form of the model;
2. estimate the parameters of the model;

3. use the assumed model structure and the estimated parameters to
form predictions.

For now, we assume that the model structure and the parameters are
known, and predict h lags ahead, i.e. X, based on X1,...,X,.

» h > 0 is called the lead or the horizon

» n is called the origin
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Conditional expectation

Let g(Xi,...,X,) be an estimator of X, based on Xi,..., X,. We
assess its performance with the prediction mean squared error

Pron =B [(Xosn— 80X, X0)?] (10.1)

Lemma 10.1

The conditional expectation
g(Xl,. o .,Xn) = E[Xn+h ’ Xl,... ,Xn]

minimizes the prediction mean square error for X, based on Xi,..., Xp.
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Forecasting

Proof of Lemma 10.1.

For Y a real-valued random variable with . = E[Y], we have

MSE (c) = E [(v - c)ﬂ
:E“Y—u+u—dﬂ
=E|(Y =] + (u— o)
= Var (Y) + (1 — ¢)*.
Thus pu = arg mine MSE (c). Then,
MSE (g(Xi, ..., X,)) = E [(X,,+h —g(X,. .. ,xn))z]
—F []E [(X,,+h —g(Xas . X)) | X X”

will be minimised at g(Xi,...,Xp) = E [Xoen| X1, ..., Xn]. O
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Forecasting

Best linear predictor

Recall the definition of linear predictor:

Definition 10.2
The best linear predictor of X, based on Xj, ..., X, is the linear function

X7h = PxpoxaXntn) = > BiX;
j=1

that minimizes the prediction mean square error.

» For Gaussian time series, the conditional expectation is linear in the
data.
» But in general, the conditional expectation will be a nonlinear
function of the data.
For simplicity, we restrict attention to linear predictors.
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Forecasting

Example: Gaussian AR(1)

Example 10.3

Suppose X; is such that X; = ¢X;_1 + &, with &; z N(0,52).
For h > 0, the best linear predictor of X, based on Xi,..., X} is

Xpoh =E[Xppn | Xi,. .., X0
= E [@Xnph—1 + Engn | X1,..., X
= (thn
Since X; is stationary, |¢| <1 and X, , — 0 as h — oo.

» X, reverts to the mean of the process.
» This is a general property of stationary ARMA models.
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observations —— predictions
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Figure: Predictions of an AR(1) process with ¢ = 0.8 and 0% = 1.
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Forecasting

Example: Gaussian MA(1)

Example 10.4

Suppose X; is such that X; = p + e¢ — Og¢_1, with &; %N(O,az).
For h > 0, we get

,',’+h=u+IE[z-:,,+h|X1,...,X,,]—0E[e,,+h_1 ‘ Xl,...,X,,]
ZM—GE[E,H_;,_]_ | Xl,...,X,,],

as g; are strictly uncorrelated with Xy, ..., X, for t > n.
For h > 1, this reduces to
Xnvh = H-
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Forecasting

Prediction equations

The best linear predictor depends only on the second-order properties.

Theorem 10.5

For a zero-mean stationary process {X:}, X}, is found by solving for
b1, ..., Bn the prediction equations

E[(Xosn— XTp) Xe] =0, k=1,....n.

The (3; are then given by the solution of the system of equations

Y0 Y e-- Yn-1 b1 Yn+h—1
0% Y% .- Yn-2 B2 Ynth—2
S0 = (10.2)
Yn-1 Yn—2 --- 70 Bn Yh

» The proof for the non-zero mean processes is an exercise.
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Application to ARMA processes

Rewriting the prediction equations (10.2) in matrix form
LhB =,

we get that if 'y, is invertible

Xph =T X and Pyp =70 = YT im)

n

with X = (Xq,...,X,)".
» I',, is invertible for invertible ARMA models, but not in all other
cases. However the best prediction X[, , is always unique.
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Comments on prediction equations

> The calculation of the solution X, = vj;I'; ' X is inefficient when n
is large because the n x n matrix I';; must be inverted.

» Recursive algorithms that do not require any matrix inversion have
been proposed: the Durbin-Levinson and the innovations algorithms
are discussed in Shumway and Stoffer (2000, §3.5).

» Theorem 10.5 is valid for any stationary process. In the next section,
we focus on predictions for causal ARMA models.
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Prediction for causal ARMA models

Prediction for causal ARMA models J
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Prediction for causal ARMA models

Prediction based on linear representation

We use the linear process representation and the implicit definition from
an ARMA equation.

Theorem 10.6

The best linear predictor X[, for X, in a causal ARMA process with
general linear representation Zf.io Vi€ is

o0
nh = Z¢15n+h—j = Ynen + Yhr1En-1+ .
Jj=h

. ) .. 2x~h-1 2
The corresponding prediction mean square error is o =0 Y5

» X j, can be evaluated from its linear representation, with unrealised
innovations €,41,...,6p4n = 0.
» The proof is an exercise for this week
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Truncated predictions for ARMA models
In practice it is simpler to predict based on ®(B)X¢;n = ©(B)etip than to

obtain the general linear representation.
The residuals & and fitted values/predictions X/ are obtained recursively

P ~
~ Z(biX{L;‘F(elgt—l+"‘+9qé\t—q)7 t= 17“')”7

€t = § i=1
0, otherwise .
Po & 9. 10.3
> GiXpi — 2 Oetn—, t+h>n, ( )
on )=l j=1
t+h — Xt+h7 t—{—hzl,...,n,
0, t+ h<0.

» The forecast error is estimated by the expression in Theorem 10.6.

» Note that )N(t” is an approximation as we had to truncate.

Sofia Olhede (EPFL) Time Series April 30, 2025 16 /27



Prediction for causal ARMA models

Comments

The best linear predictor for a causal process with mean p has form
[e.e]
Xoyn =1+ Z¢j5n+h—j-
j=h
For a causal ARMA model ¢; — 0 exponentially fast:
Xnth — pas h — oo.
Likewise for large h, the prediction error

h—1 0o

2 2 2 2 2
E [(Xn+h _Xr,17+h) ] =0 ij — 0 Z% =, h— oo.
j=0 j=0
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Prediction for integrated processes

Prediction for integrated processes J
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Truncated point forecast
Truncated point forecasts example for ARIMA(3,1,1)

Example: ARIMA(3,1,1)

We have

(1 — $1B — $2B? — ¢3B3) (1 — B)X; = (1 — 61B) ey,
which we can rewrite as

Xe =14 ¢1) Xee1 — (91 — ¢2) Xe—2 — (P2 — ¢3) Xe—3 — $3Xe 4
AR

+ &t — 915t—1 0
————
MA

We will deal with the AR and MA part as we did for ARMA models:
» AR part: replace X¢_1,..., Xi—4 with X[ ;,..., X 4.
» MA part: replace ; with the residuals if t < n, and otherwise set to 0.
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Prediction for integrated processes Truncated point forecast

Example: ARIMA(3,1,1) (cont.)

Let £, be the last observed residual (similar to eq. (10.3)). For the
one-step ahead forecast we get

Xov1 = (14 01)Xn — (b1 — 2)Xn—1 — (2 — ¢3) Xp—2 — $3X;—3 — 015

n

For t > n+1, the best linear predictor for X, based on Xi,..., X, is
then

X =1+ ¢1)XL1 — (91 — $2)Xiio — (2 — ¢3) X{L3 — $3X{ 4.

» We can generalize this example to any ARIMA(p, d, g) model.
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General case: faling back to ARMA
General case: falling back to ARMA

Let {X:} be ARIMA(p, d, q), i.e.
®(B)(1 — B)?X; = O(B)e:.

Then Z, = V7Y, is ARMA(p, q)

p q
i = Z ¢th_j +é&r — Z@j&‘t_j.
j=1 Jj=1

We know how to predict Z,p based on Z1,...,Z,, and we can use them
to predict X, +p based on Xi,..., Xy:

dyn __ =7n
\% n+h — “n+h-

Sofia Olhede (EPFL) Time Series April 30, 2025 21/27



predicting X based on Z

Suppose that X; ARIMA(p, 1, q). Then we have X1 p — Xpin—1 = Zntn
and

h—1
Xoih = Xothot + Znph = -+ :Xn+ZZn+h_j, h>1,
=0
giving
h—1
Meh=Xo+ Y Zihj h>1
=0

If {Z:} has mean o # 0,2, , — a as h — oo, and X, ~ X, + ah for h
large.

» In general for ARIMA models P, , — oo as h — oo.

» For SARIMA models with d = D =1 and o« = 0, it can be shown
that the forecast will be linear and seasonal in h.
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Prediction uncertainty

Prediction uncertainty J
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Prediction uncertainty

Source of uncertainty

There are three components of uncertainty in predictions:
1. model uncertainty,
2. estimation uncertainty,
3. innovation uncertainty.
» We assume that the model is known and that the parameters are

estimated without error. This is equivalent to removing the first two
sources of uncertainty.

» There are techniques (bootstrap) to account for the model and
estimation uncertainties, but we will not cover them in this course.
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Prediction uncertainty

Innovation uncertainty for ARMA models

Let e,(h) be the h-step ahead forecast error for X, based on Xi, ...

Then using theorem 10.6 we have

h—1
en(h) = Xnih — er17+h = Z Yi€nth—j-

j=0
We have E [e,(h)] = 0 and
h—1
Var (ex(h)) = 0 Y %7 = 70, h — 0.
Jj=0
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Prediction uncertainty

Prediction intervals

If we consider a Gaussian process, we can construct a 1 — « prediction
interval for X, based on Xi,..., X, as

X:+h T Z1—a/2 Var (en(h))l/2 s

where z, is the ath percentile of the Gaussian distribution.

observations

predictions = == 95%P.l

2.5

0.0

Xt
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