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Multivariate Time Series

Multivariate time series

A multivariate time series is a time series which takes values in Rd instead
of R.
In other words, {Xt} denotes a real d-vector-valued discrete time
stochastic process with

Xt =


X (1)

t
X (2)

t
...

X (d)
t

 , t ∈ Z,

where each of the marginal processes
{

X (1)
t

}
, . . . ,

{
X (d)

t

}
are themselves

univariate time series.
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Multivariate Time Series

Stocks example
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Multivariate Time Series

Drifter example
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NOAA - hourly position, current, and sea surface temperature from drifters was accessed on 8/4/25 from
https://registry.opendata.aws/noaa-oar-hourly-gdp.
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Multivariate Time Series

Second order stationarity

Definition 9.1 (Multivariate second-order stationary)
For all t, s, τ ∈ Z

E [Xt ] = E [Xs ] ,

Cov (Xt+τ ,Xt) = Cov (Xs+τ ,Xs) ,

trace (Var (Xt)) < ∞.

I Equivalently, we require that each of the univariate processes{
X (1)

t

}
, . . . ,

{
X (d)

t

}
are second-order stationary, and

Cov
(

X (j)
t+τ ,X

(k)
t

)
= Cov

(
X (j)

s+τ ,X
(k)
s
)
,

for all 1 ≤ j, k ≤ d and for all t, s, τ ∈ Z.
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Multivariate Time Series

Joint autocovariance sequence structure

Definition 9.2
The autocovariance sequence of a second-order stationary time series is
the matrix valued sequence

Γτ = Cov (Xt+τ ,Xt) , τ ∈ Z.

I Notice that the lag is in the first argument. This does not matter in
the univariate (real-valued) case, but does matter in the multivariate
case!

I The jkth element of Γτ is γ
(j,k)
τ = Cov

(
X (j)

t+τ ,X
(k)
t

)
.

I When j = k, this is the usual autocovariance sequence of the
univariate process.

I When j 6= k, this is called the cross-covariance sequence.
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Multivariate Time Series

Properties of the autocovariance sequence (multivariate)

I From stationarity, we can see that

γ(j,k)τ = Cov
(

X (j)
t+τ ,X

(k)
t

)
= Cov

(
X (k)

t ,X (j)
t+τ

)
(symmetry)

= Cov
(

X (k)
s−τ ,X

(j)
s
)

(stationarity)

= γ
(k,j)
−τ .

I Therefore we have Γ−τ = ΓT
τ .

I Notice that the cross-covariance sequences need not be symmetric in
τ , unlike the univariate autocovariance sequences.

I {Γτ} is positive semi-definite, i.e. ∀n ∈ N, ∀a1, . . . , an ∈ Rd

n∑
j=1

n∑
k=1

aT
j Γk−jak ≥ 0.
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Multivariate Time Series

Cross-correlation sequence

Definition 9.3 (Cross-correlation sequence)

We define the cross-correlation sequence (CCS) ρ
(j,k)
τ as

ρ(j,k)τ =
γ
(j,k)
τ√

γ
(j,j)
0 · γ(k,k)0

I For j 6= k, we have that

ρ(j,k)τ = ρ
(k,j)
−τ .
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Multivariate Time Series

Multivariate White Noise

Definition 9.4 (Multivariate White Noise)
The d-variate series {εt}t∈Z is said to be white noise with zero-mean and
covariance matrix Σ, written

{εt} ∼ WN(0,Σ)

if and only if {εt} is stationary with mean vector 0 and

Γ(ε)τ =

{
Σ if τ = 0
0 otherwise.

I Notice that there can be correlation between the different processes
at lag 0.

I However, sometimes it is useful to assume that Σ is a diagonal matrix.
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Multivariate Time Series

Example 9.5 (Uncorrelated processes)

Two jointly second-order processes
{

X (1)
t

}
and

{
X (2)

t

}
are said to be

uncorrelated if

γ(1,2)τ = 0

for all τ ∈ Z.
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Multivariate Time Series

Example 9.6 (Contemporaneous correlation)

Say that Xt = (X (1)
t ,X (2)

t )T is second-order stationary and {εt} is a
univariate mean-zero white noise process which is independent of {Xt}.
Define

Yt = Xt + εt =

(
X (1)

t + εt

X (2)
t + εt

)

Then we have

Γ(Y )
τ = Cov (Yt+τ ,Yt)

= Cov (Xt+τ ,Xt) + σ2
ε δτ,0

= Γ(X)
τ + σ2

ε δτ,0

I Note that there is therefore always lag zero correlation between Y (1)
t

and Y (2)
t , irrespective of the correlation structure in Xt .
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Multivariate spectra

Multivariate spectra
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Multivariate spectra

Spectral density matrix function

Definition 9.7 (Spectral density matrix function)

Assume that
{
γ
(j,k)
τ

}
τ∈Z

∈ `1 for all 1 ≤ j, k ≤ d . Then the spectral
density matrix function is given by

S (f ) =
∑
τ∈Z

Γτe−2πiτ f , f ∈ [−1/2, 1/2].

I The jkth element of the spectral matrix at frequency f is denoted
Sj,k (f ).

I When j = k it is the usual spectral density function.
I When j 6= k, it is called the cross-spectral density function.
I Note that Sj,k (f ) is in C in general, but if j = k it is in R.
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Multivariate spectra

Properties of the spectral density matrix function

I We have for any f ∈ [−1/2, 1/2], for all 1 ≤ j, k ≤ d ,

Sj,k (f ) = Sk,j (f )∗, Sj,k (f ) = Sj,k (−f )∗.

I As a consequence, we get the matrix results

S (f ) = S (f )H , S (f ) = S (−f )T

for any f ∈ [−1/2, 1/2].
I Furthermore, we have that the matrix S (f ) should be positive

semi-definite.
I We also have the inverse relations

Γτ =

∫ 1/2

−1/2
S (f ) e2πif τdf .
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Multivariate spectra

Theorem 9.8 (Multivariate spectral representation theorem)
Let {Xt} be a vector-valued discrete time stationary process with mean µ.
Then there exists a vector-valued orthogonal increment process {Z(f )} on[
−1

2 ,
1
2
]

such that

Xt = µ+

∫ 1
2

− 1
2

e2πiftdZ(f ). (9.1)

Assuming that
{
γ
(j,k)
τ

}
τ∈Z

∈ `1, then for f , f ′ ∈
[
−1

2 ,
1
2
]

1. E [dZ(f )] = 0,
2. Var (dZ(f )) = S (f )df ,
3. Cov (dZ(f ),dZ(f ′)) = 0 if f 6= f ′.

I Note that S (f ) here is a matrix,
I and that 0 in the third property refers to the zero matrix.
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Multivariate spectra

Coherence

Definition 9.9
The coherence between the jth and kth processes is given by

rj,k(f ) =
Sj,k (f )√

Sj,j (f )Sk,k (f )
,

and is in essence the correlation of dZj and dZk

I Coherence is a complex-valued quantity.
I Typically, we consider its magnitude or magnitude square as one

statistic.
I We then look at its argument as an notion of the “sign” of the

correlation (in the complex plane), which is called group delay.
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Multivariate spectra

Example 9.10 (Why is it called group delay?)
Consider a stationary process {Yt}, and the bivariate process {Xt} s.t.

Xt =
(
Yt , Yt−ν

)T
, t ∈ Z

for some ν ∈ Z, then we have that

S1,1 (f ) = S2,2 (f ) = SY (f ) .

Furthermore, we have γ
(1,2)
τ = Cov (Yt+τ ,Yt−ν) = γ

(Y )
τ+ν and therefore

S1,2 (f ) = SY (f ) e2πif ν .

So the coherence is

r1,2(f ) = e2πif ν .

This has magnitude one and group delay 2πνf .
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Vector Autoregression: VAR

Vector Autoregression: VAR
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Vector Autoregression: VAR

From univariate to multivariate models

I We treated vector-valued time series in terms of pair-wise
relationships.

I But how do we propose models for them?
I The simplest framework is to start from AR processes

Xt = φ1Xt−1 + · · ·+ φpXt−p + εt

I How would we generalize this to a vector-valued process?
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Vector Autoregression: VAR

Vector Autoregressive Process, VAR(p)

Definition 9.11 (Vector autoregression)
Let {εt} be a d-dimensional multivariate white noise process with
zero-mean. A process {Xt} is called a vector auto-regressive process of
order p, VAR(p), if

Xt
d×1

= Φ1
d×d

Xt−1
d×1

+ Φ2
d×d

Xt−2
d×1

+ · · ·+ Φp
d×d

Xt−p
d×1

+ εt
d×1

where the Φj ∈ Rd×d are matrices such that Φp 6= 0.

I Note that we have the same regressors in the equation, namely past
values of Xt .

I Defining the polynomial Φ(z) = 1 −
∑p

j=1 Φjz j , then we write

Φ(B)Xt = εt .
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Vector Autoregression: VAR

Everything is a VAR(1)

Consider a VAR(p), {Xt}, as before. Now we want to find a way of
writing this as

Yt
dp×1

= F
dp×dp

Yt−1
dp×1

+ Ut
dp×1

for some White noise process {Ut} and where

Yt =


Xt

Xt−1
...

Xt−p+1


I If we can do this, then we can study a VAR(1) process, and then

recover the VAR(p) processes properties from it.
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Vector Autoregression: VAR

The companion form for a VAR(p)

Notice that

Yt =


Xt

Xt−1
...

Xt−p+1

 =


Φ1Xt−1 +Φ2Xt−2 + · · ·+ΦpXt−p + εt

Xt−1
...

Xt−p+1



=


Φ1 Φ2 . . . Φp−1 Φp
Id 0 . . . 0 0
0 Id

. . . ... 0
... . . . . . . 0

...
0 . . . 0 Id 0




Xt−1
Xt−2

...
Xt−p

+


εt
0
...
0


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Vector Autoregression: VAR

Therefore, we have the companion form for a VAR(p) process as

Yt
dp×1

= F
dp×dp

Yt−1
dp×1

+ Ut
dp×1

where

Yt =


Xt

Xt−1
...

Xt−p+1

 , F =


Φ1 Φ2 . . . Φp−1 Φp
Id 0 . . . 0 0
0 Id

. . . ... 0
... . . . . . . 0

...
0 . . . 0 Id 0

 , Ut =


εt
0
...
0

 .
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Vector Autoregression: VAR

Conditions for stationarity

The VAR(p) model is called stable if the roots of

det {Id − Φ1z − · · · − Φpzp} = 0

all lie outside the complex unit circle or equivalently we can require

F =


Φ1 Φ2 . . . Φp−1 Φp
Id 0 . . . 0 0
0 Id

. . . ... 0
... . . . . . . 0

...
0 . . . 0 Id 0


has eigenvalues with modulus less than one.
Stability implies stationarity, but not the other way around in general.
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Vector Autoregression: VAR

Infinite moving average representation

Assume that the VAR(1) is stable. We can write the VAR(1) model as

Xt = Φ1Xt−1 + εt

= Φ1 (Φ1Xt−2 + εt−1) + εt

= Φ2
1Xt−2 +Φ1εt−1 + εt

= · · ·

=
∞∑

j=0
Φj

1εt−j

This manipulation can be shown to be formally correct, but is beyond the scope of the course.
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Vector Autoregression: VAR

Covariance

The covariance of a VAR(1) process is then given by

Γτ = Cov (Xt+τ ,Xt)

= Cov

 ∞∑
j=0

Φj
1εt−j+τ ,

∞∑
k=0

Φk
1εt−k


=

∞∑
j=0

∞∑
k=0

Φj
1 Cov (εt−j+τ , εt−k) (Φ

k
1)

T

=
∞∑

k=0
Φk+τ

1 Σ(Φk
1)

T
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Vector Autoregression: VAR

Recovering the VAR(p)
To recover the VAR(p) process from its companion form, we can note that

Xt
d×1

= G
d×dp

Yt
dp×1

where

G =
(
Id 0 · · · 0

)
.

Therefore, we have that

Γ(X)
τ = Cov (Xt+τ ,Xt)

= Cov (GYt+τ ,GYt)

= GΓ(Y)
τ GT

= G
( ∞∑

k=0
F k+τΣ(F k)T

)
GT
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Vector Autoregression: VAR

Example 9.12 (bivariate-VAR(1))
We consider the bivariate or (two-dimensional) process of

Xt = ν +

(
0.5 0.1
0.4 0.5

)
Xt−1 +

(
0 0

0.25 0

)
Xt−2 + εt .

For this process the reverse characteristic polynomial is

det

{(
1 0
0 1

)
−
(

0.5 0.1
0.4 0.5

)
z −

(
0 0

0.25 0

)
z2
}

= 1 − z + 0.21z2 − 0.025z3.

The roots are now instead

z1 = 1.3, z2 = 3.55 + 4.26i , z3 = 3.55 − 4.26i .

Clearly |z1| > 1 and also |z2|2 = |z3|2 = 3.552 + 4.262. Taking the
squareroot of the latter quantity we get |z2| = |z3| = 5.545
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Vector Autoregression: VAR

Simulated VAR process

X
t(1
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0.5 0.1
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)
Xt−1 +

(
0 0

0.25 0

)
Xt−2 + εt .
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Vector Autoregression: VAR

Example 9.13 (trivariate-VAR(1))

Xt = ν +

 0.5 0 0
0.1 0.1 0.3
0 0.2 0.3

Xt−1 + εt

For this process the reverse characteristic polynomial is

det


1 0 0

0 1 0
0 0 1

−

0.5 0 0
0.1 0.1 0.3
0 0.2 0.3

 z


= (1 − 0.5z)

(
1 − 0.4z − 0.03z2) .

The roots are z1 = 2, z2 ≈ 2.1525, z3 ≈ −15.4858. These are obviously
greater than unity in magnitude, and so the VAR(1) is stable.
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Vector Autoregression: VAR

Simulated VAR process
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 0.5 0 0
0.1 0.1 0.3
0 0.2 0.3
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Vector Autoregression: VAR

Yule-Walker equations

We can derive the Yule-Walker equations also for the VAR process.

Xt = Φ1Xt−1 + εt .

It therefore follows that

Cov (Xt+τ ,Xt) = Cov (Xt+τ ,Φ1Xt−1 + εt)

= Φ1Γτ−1 +Σδτ,0.

We therefore get

Γτ = Φ1Γτ−1 +Σδτ,0.

If we know Σ and Γ0 then we obtain the form of the other auto-covariance
matrices {Γτ} iteratively.
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Vector Autoregression: VAR

Vector Autoregression

For a higher order VAR(p) we have

Xt = Φ1Xt−1 + · · ·+ΦpXt−p + εt .

Therefore for τ ≥ 0 we have

Γτ = Cov (Xt+τ ,Xt)

= Cov (Xt+τ ,Φ1Xt−1 + · · ·+ΦpXt−p + εt)

= Φ1Γτ−1 + · · ·+ΦpΓτ−p + δτ,0Σ.

We can solve the first p + 1 of these to obtain Γ0, . . . , Γp in terms of Σ
and the Φj matrices. The remaining Γτ for τ > p can be obtained
recursively from the above equation.

Sofia Olhede (EPFL) Time Series April 16, 2025 35 / 35


	Multivariate Time Series
	Multivariate spectra
	Vector Autoregression: VAR

