Time Series lecture 9

Multivariate Time Series

Sofia Olhede

=PrL

April 16, 2025

Sofia Olhede (EPFL) Time Series April 16, 2025 1/35



N
Lecture outline

1. Multivariate Time Series

2. Multivariate spectra

3. Vector Autoregression: VAR

Sofia Olhede (EPFL) Time Series April 16, 2025 2/35



Multivariate Time Series

Multivariate Time Series J

Sofia Olhede (EPFL) Time Series April 16, 2025 3/35



Multivariate Time Series

Multivariate time series

A multivariate time series is a time series which takes values in R? instead
of R.

In other words, {X;} denotes a real d-vector-valued discrete time
stochastic process with

x®
Xt: y tEZ,

P g

X9

where each of the marginal processes {Xt(l)} ey {Xt(d)} are themselves
univariate time series.
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Multivariate Time Series

Stocks example
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Multivariate Time Series

Drifter example
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NOAA - hourly position, current, and sea surface temperature from drifters was accessed on 8/4/25 from
https://registry.opendata.aws/noaa-oar-hourly-gdp.
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Multivariate Time Series

Second order stationarity

Definition 9.1 (Multivariate second-order stationary)
For all t,s,7 € Z

E[X:] = E[Xd],
Cov (Xt4r, Xt) = Cov (Xst7, Xs),
trace (Var (X)) < oo.

» Equivalently, we require that each of the univariate processes
{Xlgl)} Yo {Xt(d)} are second-order stationary, and

Cov (Xt(QT,Xt(k)) — Cov <XS(J+)T,X(")> :
forall 1 <j, k <d and forall t,;s,7 € Z.
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Multivariate Time Series

Joint autocovariance sequence structure

Definition 9.2

The autocovariance sequence of a second-order stationary time series is
the matrix valued sequence

r7— = COV (Xt+7'7 Xt), T E Z

v

Notice that the lag is in the first argument. This does not matter in
the univariate (real-valued) case, but does matter in the multivariate
case!

The jkth element of ', is 7Y = Cov (Xt(ﬂr)T,Xt(k)) .

When j = k, this is the usual autocovariance sequence of the
univariate process.

When j # k, this is called the cross-covariance sequence.

v

v

v
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Multivariate Time Series

Properties of the autocovariance sequence (multivariate)

» From stationarity, we can see that
AU — Coy < X9 Xt(k)) — Cov ( X9, Xfil) (symmetry)

s—T17 7S

= Cov (X(k) X(j)) (stationarity)

» Therefore we have I, =TT.

» Notice that the cross-covariance sequences need not be symmetric in
7, unlike the univariate autocovariance sequences.

» {I'.} is positive semi-definite, i.e. Vn € N, Vay,...,a, ¢ R?

En: zn: ajTFk,jak > 0.

j=1 k=1
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Multivariate Time Series

Cross-correlation sequence

Definition 9.3 (Cross-correlation sequence)

We define the cross-correlation sequence (CCS) p(Tj’k) as

Lk
U:k) — i
T i.j k,k
,}/(gJ,J) -’Yé )
» For j # k, we have that
; k
pUk) = plkd)
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Multivariate Time Series

Multivariate White Noise

Definition 9.4 (Multivariate White Noise)
The d-variate series {€},.; is said to be white noise with zero-mean and

covariance matrix X, written

{e+} ~ WN(0,X)

if and only if {e;} is stationary with mean vector 0 and

T 10 otherwise.

» Notice that there can be correlation between the different processes

at lag 0.
» However, sometimes it is useful to assume that ¥ is a diagonal matrix.
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Multivariate Time Series

Example 9.5 (Uncorrelated processes)

Two jointly second-order processes {Xt(l)} and {X,_Sz)} are said to be

uncorrelated if

1 =0

for all T € Z.
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Multivariate Time Series

Example 9.6 (Contemporaneous correlation)

Say that X; = (Xt(l),Xt(z))T is second-order stationary and {¢;} is a
univariate mean-zero white noise process which is independent of {X;}.

Define
X(l)—i—e
Ye=Xe+e= (" i
=Xt (xgzuet

Then we have

) = Cov(Yeir, Ye)
= Cov (XH_-,-, Xt) aF 0'6257-’0
= FQ‘) + 06257,0
» Note that there is therefore always lag zero correlation between Yt(l)

and Yt(z), irrespective of the correlation structure in X;.
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Multivariate spectra

Multivariate spectra J
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Multivariate spectra

Spectral density matrix function

Definition 9.7 (Spectral density matrix function)
Assume that {#k)}
TE

density matrix function is given by

S(F)=> Te ™ fel-1/2,1/2].

TEL

’ € (* for all 1 < j, k < d. Then the spectral

v

The jkth element of the spectral matrix at frequency f is denoted
Sjik (f)-
When j = k it is the usual spectral density function.

v

v

When j # k, it is called the cross-spectral density function.
Note that S;  (f) is in C in general, but if j = k it is in R.

v
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Multivariate spectra

Properties of the spectral density matrix function

v

We have for any f € [-1/2,1/2], forall 1 < j, k < d,
Sik (F) =Sk ()", Sju(F) = S (=F)"

» As a consequence, we get the matrix results

s(f)=s(N)", s(H=s(-1"

for any f € [-1/2,1/2].
Furthermore, we have that the matrix S (f) should be positive
semi-definite.

\4

We also have the inverse relations

v

1/2 )
r'r :/ S(f) e27”f7df.
-1/2
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Multivariate spectra

Theorem 9.8 (Multivariate spectral representation theorem)

Let {X:} be a vector-valued discrete time stationary process with mean p.

Then there exists a vector-valued orthogonal increment process {Z(f)} on
[—%, %] such that

1
X; =+ /2 2"t Z(f). (9.1)

N|=

. (k) 1 / _11
Assuming that {'yT }TGZ € 0, then for f f' € [ oL 2]
1. E[dZ(f)] =0,
2. Var(dZ(f)) = S(f)df,
3. Cov (dZ(f),dZ(f")) =0 if f #f'.

» Note that S (f) here is a matrix,

» and that 0 in the third property refers to the zero matrix.
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Multivariate spectra

Coherence

Definition 9.9

The coherence between the j™ and k'™ processes is given by
Sk (f)

V515 (F) Sk (F)°

and is in essence the correlation of dZ; and dZ;

rik(f) =

» Coherence is a complex-valued quantity.

» Typically, we consider its magnitude or magnitude square as one
statistic.

» We then look at its argument as an notion of the “sign” of the
correlation (in the complex plane), which is called group delay.
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Multivariate spectra

S - o)zl
Example 9.10 (Why is it called group delay?)

Consider a stationary process { Y;}, and the bivariate process {X;} s.t.

Xe=(Ye, Yey) | teL
for some v € Z, then we have that
S11(F) = S22 (f) =Sy (f).

Furthermore, we have 7972) = Cov (Yigr, Yiy) = fyﬁﬁ, and therefore

51’2 (f) = Sy (f) e27rif1/.
So the coherence is
r172(f) _ e27rifu.

This has magnitude one and group delay 27vf.
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Vector Autoregression: VAR

Vector Autoregression: VAR J
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Vector Autoregression: VAR

From univariate to multivariate models

v

We treated vector-valued time series in terms of pair-wise
relationships.

v

But how do we propose models for them?

v

The simplest framework is to start from AR processes

Xe=¢1Xe1+ -+ PpXe—p + et

How would we generalize this to a vector-valued process?

v
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Vector Autoregression: VAR

Vector Autoregressive Process, VAR(p)

Definition 9.11 (Vector autoregression)

Let {e+} be a d-dimensional multivariate white noise process with
zero-mean. A process {X;} is called a vector auto-regressive process of

order p, VAR(p), if

Xe = O Xe1+ O Xp o+ -+ O X + &
dx1 dxd dx1 dxd dx1 dxd dx1 dx1

where the ®; € R9*? are matrices such that ¢, # 0.

» Note that we have the same regressors in the equation, namely past
values of X;.
» Defining the polynomial ¢(z) =1 — Zle ®;Z/, then we write

q)(B)Xt = Et.
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Everything is a VAR(1)

Consider a VAR(p), {X;}, as before. Now we want to find a way of
writing this as

Yt = F Yt—1+ Ut
dpx1 dpxdp gpx1  dpx1

for some White noise process {U;} and where

X:
Xi—1
Y: = .

xt—p+1
» If we can do this, then we can study a VAR(1) process, and then
recover the VAR(p) processes properties from it.
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Vector Autoregression: VAR

The companion form for a VAR(p)

Notice that
X;
vo— | X
Xt;p+1

Sofia Olhede (EPFL)
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Vector Autoregression: VAR

Therefore, we have the companion form for a VAR(p) process as

Y: = F Y1+ U

dpx1 X dpx1  dpx1
where
O P .. D, D,
Xt ly O 0 0 €t
Xi—1 0
Y;: = , F=10 I 0], U;=
X, 1 . . . 0 0
et 0O ... 0 Iy 0
Time Series April 16, 2025 25/35
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Vector Autoregression: VAR

Conditions for stationarity

The VAR(p) model is called stable if the roots of
det{ly —P1z—--- —®,z°} =0

all lie outside the complex unit circle or equivalently we can require

d; O ... b, D,
lyg 0O ... 0 O
F=10 Iy ; 0
: 0
0 0 Iy 0

has eigenvalues with modulus less than one.
Stability implies stationarity, but not the other way around in general.
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Vector Autoregression: VAR

Infinite moving average representation

Assume that the VAR(1) is stable. We can write the VAR(1) model as

Xt =®1X;1+ &
=& (P1 X2+ €r-1) + €
= ‘D%thz + P11+ et

m .
=) Pec
=0

This manipulation can be shown to be formally correct, but is beyond the scope of the course.
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Vector Autoregression: VAR

Covariance

The covariance of a VAR(1) process is then given by

I_T = Cov (xt+7-, Xt)

o [o.¢]
' k
= Cov E ¢Jl€t—j+7'7§ b i
j=0 k=0

o0 o
j kK\T
= E : &) Cov (€¢—jir, €e—k) (P1)
j=0 k=0
o
_ E : k+7 k\T
- q>1 Z(q>1)
k=0
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Recovering the VAR(p)

To recover the VAR(p) process from its companion form, we can note that

Xt - G Yt
dx1  dXxdp dpx1

where
G=(lg 0 -+ 0).
Therefore, we have that
) = Cov (Xeir, Xy)
= Cov(GY¢tyr, GYy)
= G6rivg’

-G (i Fk+Tz(Fk)T> GT

k=0
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Example 9.12 (bivariate-VAR(1))

We consider the bivariate or (two-dimensional) process of

05 0.1 0 0
Xt:V+( )Xt—1+< )Xt—2+5t-

0.4 05 025 0
For this process the reverse characteristic polynomial is
e 1 0y /05 01 5 0 O 2
0 1 0.4 05 025 0
=1-2z+02172° —0.0252°.
The roots are now instead
z1 =13, 2z =3.55+4.26i, z3=3.55—4.26i.

Clearly |z1| > 1 and also |z|? = |z3|* = 3.552 + 4.262. Taking the
squareroot of the latter quantity we get |z| = |z3| = 5.545
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Vector Autoregression: VAR

Simulated VAR process Cross-correlation sequences
1.0
2.5+
= 0.0+ 0.5
-2.51 0.04
1.0
2.5
5 0.0+ 0.5 1
= -2.54
-5.0 1 0.0
-75-1— T T T T
0 50 100 150 200 0
t
0.5 0.1 0 O
Xi=v+ Xio1+ Xt2 + &t
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Vector Autoregression: VAR

Example 9.13 (trivariate-VAR(1))

05 0 O
Xe=v+ | 01 01 03 | Xio1+e
0 02 03

For this process the reverse characteristic polynomial is

100 05 0 0

detq {0 1 0 —]01 01 03]z
00 1 0 02 03

=(1-05z) (1 —0.4z —0.032%)..

The roots are z; = 2, zp = 2.1525, z3 ~ —15.4858. These are obviously
greater than unity in magnitude, and so the VAR(1) is stable.
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Vector Autoregression: VAR

Simulated VAR process Cross-correlation sequences
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Yule-Walker equations

We can derive the Yule-Walker equations also for the VAR process.
Xt = q)]_xtf]_ + Et.
It therefore follows that

Cov (Xt+7'7 Xt) = Cov (Xt+7—, <D1Xt_1 + €t)
= q>1 rT—]. + 257,0'

We therefore get
M=o _1+ 2(57—10.

If we know X and g then we obtain the form of the other auto-covariance
matrices {[;} iteratively.
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Vector Autoregression: VAR

Vector Autoregression

For a higher order VAR(p) we have
Xe =01 X1+ + PpXep + 4.
Therefore for 7 > 0 we have

r7- = Cov (Xt+7, Xt)
= Cov(Xeyr, 1 X1+ -+ PpXep +€4)
=0 14+ P+ 0702

We can solve the first p + 1 of these to obtain g, ..., [, in terms of ¥
and the ®; matrices. The remaining I~ for 7 > p can be obtained
recursively from the above equation.
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