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The periodogram

Spectral estimation
In this lecture, we will develop methodology to estimate the spectral
density function from some observed time series. In other words, say we
have a finite set of equally spaced time points

T = {1, . . . , n} ,

and we observe Xt for all t ∈ T , then how do we estimate S (f )?

t
0 500 1000

X
t

−100

−50

0

50

100

Figure: Simulated AR(4) time series with n = 1000

We set σ2 = 1, φ = [2.7607,−3.8106, 2.6535,−0.9238], replicating an example from Percival and Walden (1993).
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The periodogram

Recall the relationship

S (f ) =
∑
τ∈Z

γτe−2πif τ .

We can therefore produce an estimator of S (f ) from γ̂τ by a plug–in
estimator.

Definition 8.1 (The periodogram)
The periodogram is defined as

Ŝ(p) (f ) =
∑
τ∈Z

γ̂τe−2πif τ (8.1)

where {γ̂τ}τ∈Z is given by

γ̂τ =

{
1
n
∑n−|τ |

t=1 (Xt − X̄)(Xt+|τ | − X̄) if |τ | ≤ n − 1,
0 otherwise.
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The periodogram

Relation to the finite Fourier transform of the data

Proposition 8.2

The periodogram can be written in terms of the finite Fourier transform of
the observed data, in that

Ŝ(p) (f ) = |J(f )|2 , (8.2)

where recalling T = {1, . . . , n}, we define

J(f ) =
√

1
n
∑
t∈T

(
Xt − X̄

)
e−2πitf . (8.3)

I See the exercise sheet for a proof.
I J(f ) can be computed efficiently using the Fast Fourier Transform.
I In fact, one can compute the sample autocovariance efficiently by

simply inverse transforming the periodogram!
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The periodogram

Properties of the periodogram

Ideally as an estimator we would have
1. E

[
Ŝ(p) (f )

]
= S (f ),

2. Var
(

Ŝ(p) (f )
)
→ 0 as n → ∞,

3. Cov
(

Ŝ(p) (f ) , Ŝ(p) (f ′)
)
= 0 for f 6= f ′.

However instead we find that
1. is approximately valid.
2. is false.
3. holds approximately if f and f ′ have a particular form (the Fourier

frequencies).
We will deal with each of these in turn.
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The periodogram

Expectation

Since the periodogram is a finite sum of the sample autocovariance, (and
assuming zero-mean) we see

E
[
Ŝ(p) (f )

]
=

∑
τ∈Z

E [γ̂τ ] e−2πiτ f

=
∑
τ∈Z

(
1 − |τ |

n

)
1[−n,n](τ)γτe−2πiτ f

=
∑
τ∈Z

wτγτe−2πiτ f

where

wτ =

(
1 − |τ |

n

)
1[−n,n](τ)

is a weight sequence, which results in bias.
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The periodogram

Example

Consider an example of an AR(4) model. Below is a comparison between
the true spectral density and the periodogram from a simulated series with
n = 1000 points. We see a substantial discrepancy here.

f
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S Δ
(f)

100.0

102.5

105.0

periodogram truth

Figure: The periodogram of a simulated AR(4) model vs the true spectral density
function, recreated from Percival and Walden (1993).
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The periodogram

Expectation as a convolution

Since we are interested in the spectral density function, it may be useful to
rewrite this expectation in the frequency domain. Since we have a
multiplication in time, this becomes a convolution in frequency so that

E
[
Ŝ(p) (f )

]
=

∫ 1
2

− 1
2

S
(
f ′
)
Fn

(
f − f ′

)
df ′ (8.4)

where

Fn(f ) =
∑
τ∈Z

wτe−2πiτ f

=

{
1
n
sin2(nπf )
sin2(πf ) if f 6= 0,

n if f = 0.

The function Fn called the Fejér kernel.
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The periodogram

Blurring

Examining the Fejér kernel, we see that it does not decay quickly in
frequency. This causes the bias seen earlier, an effect typically called
blurring.
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Figure: The Fejér kernel for n = 1000.
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The periodogram

Variance

The second issue is the variance. In particular, one can show that (for
f 6= 0 mod π)

Var
(

Ŝ(p) (f )
)
→ S (f )2 (8.5)

as n → ∞.
I So the variance does not decrease with increasing sample size.
I We cover solutions to both the bias and variance problems in the

following sections.
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Tapering

Tapering
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Tapering

Tapering

One way to fix blurring is known as tapering. Here we replace the discrete
Fourier transform by a tapered version

Jh(f ) =
∑
t∈T

ht ·
(
Xt − X̄

)
e−2πitf (8.6)

where {ht}t∈T is called a data taper, and satisfies

‖h‖2
2 = 1.

Clearly setting ht =
√

1/n we recover the standard discrete Fourier
transform. Now the tapered periodogram is

Ŝ(p)
h (f ) = |Jh(f )|2 . (8.7)
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Tapering

Effect of tapering

One can show that (see exercises)

E
[
Ŝ(p)

h (f )
]
=

∫ 1/2

−1/2
S
(
f ′
) ∣∣H(f − f ′)

∣∣2 df ′ (8.8)

where H is the discrete Fourier transform of h.
We therefore want to choose h so that |H(f )|2 is focused around zero
frequency.
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Tapering

One choice of such tapers are the dpss tapers, which try to optimally
achieve this. This is beyond the scope of this course, but see Percival and
Walden (1993) for more details.
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Figure: The same AR(4) example but applying a taper.
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Tapering

Taper kernel

Here the |H|2 decays faster than Fejér kernel, resulting in the decrease in
bias we previously noted.

f
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Figure: A comparison of the Fejér kernel and |H|2 for a choice of taper.
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Multitapering

Multitapering
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Multitapering

A family of tapers

In order to reduce variance, we need to average. Define a family of tapers
for k = 1, . . . ,K

hk = {ht,k}t∈T (8.9)

which are orthogonal, i.e. for 1 ≤ k, k ′ ≤ K∑
t∈T

ht,kht,k′ = δk,k′ .

Note that these tapers do depend on n, but we suppress this for notational
convenience.
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Multitapering

Multitaper

The simplest multitaper estimate is

Ŝ(mt) (f ) = 1
K

K∑
k=1

Ŝ(p)
hk

(f ) . (8.10)

We can determine its expectation:

E
[
Ŝ(mt) (f )

]
=

1
K

K∑
k=1

E
[
Ŝ(p)

hk
(f )

]
=

∫ 1
2

− 1
2

H
(
f − f ′

)
S
(
f ′
)

df ′.

We call H(f ) = 1
K
∑K

k=1 |H(f )|2 the average kernel.
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Multitapering

One can show that asymptotically (see exercises)

Cov
(

Ŝ(p)
hk

(f ) , Ŝ(p)
hk′

(f )
)
→ S (f )2 δk,k′

as n → ∞ and therefore

Var
(

Ŝ(mt) (f )
)
≈ S (f )2

K .
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