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The periodogram

The periodogram J
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The periodogram

Spectral estimation

In this lecture, we will develop methodology to estimate the spectral
density function from some observed time series. In other words, say we
have a finite set of equally spaced time points

T=A{1,...,n},

and we observe X; for all t € T, then how do we estimate S (f)?
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Figure: Simulated AR(4) time series with n = 1000

We set 02 = 1, ¢ = [2.7607, —3.8106, 2.6535, —0.9238], replicating an example from Percival and Walden (1993).
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The periodogram

Recall the relationship

_ Z ~ e—27rif7'
= - .

TEZL

We can therefore produce an estimator of S(f) from 4, by a plug—in
estimator.

Definition 8.1 (The periodogram)

The periodogram is defined as

SEY(F) =" 4,e72mif (8.1)

TEZL

where {4}, 7 is given by

Ay = Zt_IT|(Xt )(Xt+|7-| X) if |7| <n—1,
i 0 otherwise.
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The periodogram

Relation to the finite Fourier transform of the data

Proposition 8.2

The periodogram can be written in terms of the finite Fourier transform of
the observed data, in that

S () = |[J(F)P, (8.2)
where recalling T = {1,...,n}, we define
1 _ )
J(f) = \/; > (X = X) e (8.3)
teT

» See the exercise sheet for a proof.

» J(f) can be computed efficiently using the Fast Fourier Transform.

» In fact, one can compute the sample autocovariance efficiently by
simply inverse transforming the periodogram!
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The periodogram

Properties of the periodogram

Ideally as an estimator we would have

1. E [§<P>(f)} = S(f),
2. Var (g(”) (f)) — 0 as n — oo,

3. Cov (§(P) (f), S (f')) =0 for f % f'.
However instead we find that
1. is approximately valid.

2. is false.

3. holds approximately if f and f’ have a particular form (the Fourier
frequencies).

We will deal with each of these in turn.
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The periodogram

Expectation

Since the periodogram is a finite sum of the sample autocovariance, (and

assuming zero-mean) we see

5[50 (] - Y el e 2

TEL
I7| -
_Z( 1[ nn]( ) —27itf
TEL
— Z WT’YTe_27Tin
TEL

where

Y A

is a weight sequence, which results in bias.
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Example
Consider an example of an AR(4) model. Below is a comparison between

the true spectral density and the periodogram from a simulated series with
n = 1000 points. We see a substantial discrepancy here.

periodogram

truth
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Sa(f)
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!

Figure: The periodogram of a simulated AR(4) model vs the true spectral density
function, recreated from Percival and Walden (1993).
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The periodogram

Expectation as a convolution

Since we are interested in the spectral density function, it may be useful to

rewrite this expectation in the frequency domain. Since we have a

multiplication in time, this becomes a convolution in frequency so that

1

E [g(p) (f)] — /2

S () Fn (F = ) df’

N

where

fn(f) — Z WTef27rin

TEL
in2(nm .
— %SsinQ((ﬂ'fg) if f ?é O’
n if f=0.

The function F,, called the Fejér kernel.
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The periodogram

Blurring

Examining the Fejér kernel, we see that it does not decay quickly in

frequency. This causes the bias seen earlier, an effect typically called
blurring.
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Figure: The Fejér kernel for n = 1000.
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The periodogram

Variance

The second issue is the variance. In particular, one can show that (for
f#0 mod )

Var (E(P) (f)) S S(F)? (8.5)

as n — oo.
» So the variance does not decrease with increasing sample size.

» We cover solutions to both the bias and variance problems in the
following sections.
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Tapering
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Tapering

One way to fix blurring is known as tapering. Here we replace the discrete
Fourier transform by a tapered version

Ih(F) = he- (Xe = X) e2m (8.6)

teT

where {h:},. 7 is called a data taper, and satisfies
2
[hll; = 1.

Clearly setting hy = \/1/n we recover the standard discrete Fourier
transform. Now the tapered periodogram is

S (F) = |In(F)2. (8.7)
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Effect of tapering

One can show that (see exercises)

1/2

E [§§P)(f)] :/ S (FY [H(f — £) | aF (8.8)

—1/2

where H is the discrete Fourier transform of h.

We therefore want to choose h so that |H(f)|? is focused around zero
frequency.
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One choice of such tapers are the dpss tapers, which try to optimally
achieve this. This is beyond the scope of this course, but see Percival and
Walden (1993) for more details.

tapered periodogram truth

0.0 0.2 0.4
f

Figure: The same AR(4) example but applying a taper.
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Taper kernel

Here the \H\z decays faster than Fejér kernel, resulting in the decrease in
bias we previously noted.
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Figure: A comparison of the Fejér kernel and |H|2 for a choice of taper.
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Multitapering

Multitapering
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A family of tapers

In order to reduce variance, we need to average. Define a family of tapers
fork=1,....K

he = {hektier (8.9)

which are orthogonal, i.e. for 1 < k. k' < K

Z he khe k= O -

teT

Note that these tapers do depend on n, but we suppress this for notational
convenience.
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Multitaper

The simplest multitaper estimate is

Stmo) (£ == Z S (8.10)

We can determine its expectation:

o[510] -

We call H(f) = £ 525, |H(f)|? the average kernel.
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Multitapering

One can show that asymptotically (see exercises)
Cov (3,(,’:) (). 5 (f)) — S(F)? Srse

as n — oo and therefore

5(f)°
o

Var (g(mt) (f)) ~
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