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Spectral density (simple case)
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Spectral density (simple case)

The spectral density function

For simplicity, for the remainder of the course we consider only A = 1.

Definition 7.1

Consider a discrete time process {X;},.;, with autocovariance sequence
satisfying {7, } € /1. We define the spectral density function to be

S(F)=> e (7.1)

TEZL

for all f € R.

» This is simply the discrete Fourier transform of the autocovariance
sequence.

» The subscript indicates that this is the spectral density function of the
discrete time process.
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Spectral density (simple case)

The spectral density function (continuous time)

Now consider the continuous time case.

Definition 7.2

Consider a continuous time process {X(t)},.g, With autocovariance
function v € L!, then the spectral density function is

S (f) = /00 y(r)e 2 dr (7.2)

—00

for f € R.
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Spectral density (simple case) Continuous vs discrete

Aliasing

» If we sample a continuous time process at discrete points, then clearly
the autocovariance sequence of the sampled process is the
autocovariance function of the original process sampled at those same
points.

» From the previous lecture, we therefore know that there is an aliasing
relation between the spectral density functions of the two respective
processes.

» In particular

S(F)=> S (F+k). (7.3)

keZ
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Spectral density (simple case) Continuous vs discrete

» The frequency % is called the Nyquist frequency.
» If 7 (f) is essentially zero for |f| > % we can expect a good
correspondence between .# (f) and S (f).

> If 7 (f) is large for |f| > 1 then the correspondence is poor so S (f)
tells us nothing about .& (f).

good agreement poor agreement
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Figure: Aliasing for two different continuous processes
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Spectral density (simple case) Continuous vs discrete

Harmonic processes

Definition 7.3 (Harmonic (Sinusoidal) process)

Consider two independent random variables A > 0 and © ~ Unif(—m, 7).
We construct a harmonic process {X;} by setting

X¢ = Acos(vt + ©), (7.4)
for all t € Z where v € R determines the frequency of the oscillation.
» We can see that
E [Xt] =0,

Cov (Xpyr, Xt) = %E [A?] cos(vT).

» This process is stationary, but clearly does not have v, € ¢}, can we
still have a notion of spectra in this case?
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Spectra for general stationary processes
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Spectra for general stationary processes

Herglotz's theorem

Theorem 7.4 (Herglotz's theorem)

Given a complex valued sequence {gt},.;. then g is non-negative definite
if and only if for all t € Z

12
g= [ emmacr) (7.5)
-1/2
where GU)(=1/2) =0, and GU) is right continuous, bounded and

non-decreasing.

» This can be generalised in a number of ways, but we require only
complex valued sequences here.

» Note the properties are essentially the same as a cumulative
distribution function.
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Spectra for general stationary processes

Integrated spectrum

As a result of Herglotz's theorem, and that the autocovariance sequence is
non-negative definite, we have that

1/2 )
Ve = / e fast (f) (7.6)
—1/2

» SU)(.) is referred to as the integrated spectrum, or sometimes the
spectral distribution function.
» We have the immediate properties:
(i) SO (-=%) =0and S (3) =02
(i) f<f = SO(F)<SO(F).
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Spectra for general stationary processes

Relation to the spectral density function

» If there is a function S (+) such that
f
s () = / S(A\)dA (7.7)
then S(-) is called the spectral density function.
» This occurs if the autocovariance function is absolutely summable, in

which case this is equivalent to the definition of the spectral density
function seen earlier in the lecture.
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Spectra for general stationary processes

» In various books people use w = 2xf instead of f. This is called
angular frequency rather than frequency. | don't like it, because it
causes factors of 27 to fly around all over the place, that are easily
missed /forgotten, but it is equivalent.

» Intuitively, S (f)df is the average contribution over all realisations of
the process to the power from components with frequencies in a small
interval around f. The variance or “power” of {X;} is

1

Var (Xt) = = /2 e2ﬂ'if.05(f) df.

N=
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Spectra for general stationary processes

Lebesgue decomposition theorem

Theorem 7.5 (Lebesgue decomposition theorem)

Any integrated spectrum SU) (-) can be written as
SO(y=sD ) +5M )+,

where SJ-(I) () non-negative, non-decreasing with Sfl) (—=3) =0 for
j=1,2,3 and where Sy) (+) is absolutely continuous, Sél) (+) is a step
function and Sé’) () is a continuous singular function.

» This is actually a more general result, but we state it here for our
specific case.

» Now we will turn to the meaning of the different components Sj(l) (-)-
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Spectra for general stationary processes

Lebesgue decomposition theorem: further detail

(a) Sil) () is an absolutely continuous function and satisfies
/ f
SO (f) = / S(\)d (7.8)
-1/2

for all f € [-1/2,1/2].

(b) Sél) (+) is a step function with jumps of size {p;} at the points {f;},
where f; are frequencies of pure sinusoids.

(c) Sél) () is a continuous singular function (pathological and generally of
no practical use).

Sofia Olhede (EPFL) Time Series April 2, 2025 15/21



Spectra for general stationary processes

Lebesgue decomposition theorem: some examples

We can then characterise some common scenarios in terms of this
decomposition:

(a) This case corresponds to SY) (f)>0and Sél) (f) = 0. In this case we

say that {X:} has a purely continuous spectrum. Note that as SY) ()
is absolutely continuous and non-decreasing (often increasing). Hence
its derivative S (f) is absolutely integrable (Titchmarsh, 1960, for
example). But note that if S(f) is absolutely integrable

13, cos(2nfr)S (F)df — 0 [3,sin(2nf7)S (£)df — 0 as 7 — oc.

So as T — o0:
1/2

1/2
Vr = / cos(2nfr)S (f)df + i/ sin(2rf1)S(f)df — 0.
~1/2 ~1/2
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Spectra for general stationary processes

(b) This case corresponds to Sil) (f)=0and Sél) (f) > 0. Here the
integrated spectrum consists entirely of a step function, and the
stationary process is said to have a purely discrete spectrum (or a line
spectrum). In this case the ACVS does not damp down to zero.

(c) Mixed spectrum. This case corresponds to Sgl) (f)>0and
s ) >o.
» Example case (a): ARMA processes in general.
» Example case (b): sinusoid with random Phase and Amplitude.

» Example case (c): point-wise aggregation of above.
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Spectral representation theorem

Spectral representation theorem J

Sofia Olhede (EPFL) Time Series April 2, 2025 18/21



Spectral representation theorem

Complex random variables

» Note that the covariance of two complex random variables Z; and 2
is defined as

Cov (Zl, Z2) =E [(Zl —E [Zl]) (Z2 —E [ZQ])*] .

where a* denotes the complex conjugate of a € C.

» The complementary covariance or relation is defined as

ReI{Zl, Z2} =K [(Zl — EZl)(ZQ — EZQ)] .

Sofia Olhede (EPFL) Time Series April 2, 2025 19/21



Spectral representation theorem

Theorem 7.6 (Spectral representation theorem)

Let {X:} be a real-valued discrete time stationary process with mean .

Then there exists an orthogonal increment process {Z(f)} on [—3, 3]
such that

1
Xe=p+ / " etz (f). (7.9)

1
2

This equality holds in the mean—square sense. The process {Z(f)} has
properties for f,f' € [—1 1]

1. E[dZ(f)] =0, o
2. Var(dZ(f)) = dSU (f),
3. Cov (dZ(f),dZ(f")) =0 if f # f'.
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