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N
Lecture outline

1. Yule-Walker (method-of-moments) for AR models

2. Least squares for Gaussian mean-zero AR models

3. Least squares for general ARMA models
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Yule-Walker (method-of-moments) for AR models
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Yule-Walker (method-of-moments) for AR models
Setup

For the first two sections of this lecture, assume that X; is a mean-zero
causal AR process of order p:
Xe= 1 Xe1+ @2 Xe o+ + 9pXep + €t

p
=) GiXek +et,

k=1
iid . . . .
where €; ~ N (0, ‘752) is a Gaussian white noise process.

We suppose that we have observed Xi, ..., X, and we want to estimate
the parameters ¢1, ..., ¢p and o2,
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Yule-Walker (method-of-moments) for AR models

Yule-Walker derivation

To derive the estimation method we start by multiplying through the AR
equation by X;_, for k >0

p
XeXeok =Y iXeiXeok + exXek
i=1

P
= E[XeXe—i] = > &F [Xeo i Xe—i] + E[ecXei]
i=1

» Remember the process is causal, so E [e;X;_x] = 0.
» Furthermore, we have assumed X; is mean-zero, so
E [Xe—jXe—k] = k)

» Therefore
P

Yk = Z i Vk—j (4.1)
j=1
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Yule-Walker (method-of-moments) for AR models

Therefore using (4.1) and symmetry of v, = y_,

7 = P17 + G271 + - F DpYp—1,

Y2 =171+ P20 + o+ PpYp—2,
(4.2)

Tp = ¢1'7p71 + ¢27p72 + -+ pr’YO-

» In matrix form we have

vy=T¢
where v = (v1,...,7) ", and ¢ = (¢1, .. .,qﬁ,,)T and
7o 7To-- Yp-1
r— ’Y-l ’Y_o ’Vp-f2
'Yp'fl 'Yp;2 ');0
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Yule-Walker (method-of-moments) for AR models

» If the mean is zero take

n—|7]

R 1
Yr = E ; XtXt+|T|

» We estimate ¢ via
p=T"%

» Now we just need to estimate o2. We have
E [X7] = 1B [XeXeo1] + -+ + $p [XeXe—p] + E [ecXe] -

» Therefore

p
Yo = Z ¢jvj + E[eeXt]
j=1
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Yule-Walker (method-of-moments) for AR models

» Furthermore,
€eXe = PreeXe—1 + -+ + Pper Xe—p + e%
» We take expectations of the left and right hand side and get that
E[e:Xe] = ¢1E [eeXe—1] + - - + ¢pE [ Xe—p] + E [€7]

=¢1- 0+ +¢p-0+07

p

2

=0 =Y ¢y +0’.
=1

» Thus the estimator is 52 = 4g — Zf:l b4
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Yule-Walker (method-of-moments) for AR models

Definition 4.1 (Yule-Walker estimators)

The estimators QAS,, and G2 are the Yule-Walker estimators.

p=T0" (43)
1%

32 =40~ Y _ b/ (4.4)
j=1

» Inverting I';, naively is O (p3), but the Levinson-Durbin algorithm is
0 (p2) by using the structure of I';, (symmetric Toeplitz matrix).
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Least squares for Gaussian mean-zero AR models
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Least squares for Gaussian mean-zero AR models

Forward least squares: formulation

In order to formulate a least squares approach we begin from the definition
of an AR process

Xe =01 Xe 1+ + 0pXep + €.
Specifically, we can write
Xpy1 = 01 Xp + P2 Xp_1 + -+ 0p X1 + €pt1

(4.5)
Xn = (len—l + ¢2Xn—2 +- 4+ (prn—p +€n

» Other terms Xi,..., X, have to be discarded, as we do not observe
times before Xj.
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Least squares for Gaussian mean-zero AR models

Forward least squares: matrix form

We can rewrite this in matrix form

XF=F¢p+e
where
Xp+1 ¢1 €p+1
XF - : 3 ¢ - , €= )
X pr €n
and
Xp  Xp—1 - X1
Xn—l Xn—2 T Xn—p
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Least squares for Gaussian mean-zero AR models

Forward least squares: objective function

We can estimate ¢ by finding the vector which minimises

SS(¢) = [|XF — Fo|?

n P 2
= > (Xt—Zthk)
t=p+1 k=1
n

-ya

t=p+1

» This is a standard least squares problem.
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Least squares for Gaussian mean-zero AR models

Definition 4.2 (Forward least squares estimators)

We write the minimiser by q§,:, the estimator takes the form
b= (FTF) " FTXg (4.6)

which is the usual least squares estimator. Finally we may estimate o2
using standard least squares methods:

5% = |%r — Fée| /(n—p —p). (4.7)

Together, ¢F,3,2_- are known as the forward least squares estimators.
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Least squares for Gaussian mean-zero AR models

Backward least squares: time reversibility

The backward least squares approach is based on the time reversibility
property of a Gaussian AR process.
» In particular, there exists a representation Y; = X_; as an AR process
with the same parameters.

» Specifically,

1%
Ye=> ¢jpYej+ b (4.8)
j=1

where 7; has the same distribution as €;. Rewriting in terms of X,
with v; = U_+ we have

P P
K= Vo= 3 g Y 5= S by b
=1 j=1

The proof of (4.8) will be given later, using frequency domain methods.
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Least squares for Gaussian mean-zero AR models

Backward least squares: formulation

Now perform the same trick as in the forwards case:

X1=01X2+ ¢2 Xz + -+ PpXpp1 + 11

(4.9)
anp = ¢1anp+1 + ¢2anp+2 +---+ ¢an + Vn

» This time we are regressing the first n — p values in the time series
against the values at appropriate lags.

» In contrast, the forwards approach used the last n — p values.
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Least squares for Gaussian mean-zero AR models

Backward least squares: matrix form

In matrix form

X5 = B+ v
where
X1 $1 21
XB - : ’ ¢ = ) V= :
Xn—p pr Vn—p
and
Xo X3 o Xpn
Xn—p+1 Xn—p+2 te Xn
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Least squares for Gaussian mean-zero AR models

Definition 4.3 (Backward least squares estimators)

We write the minimiser by $B, the estimator takes the form

é5 = (BTB) 'BTX;z (4.10)
which is again the least squares estimator. Finally we may estimate
02 = 02 using standard least squares methods:

53 = x5 88| /(n—p—p). (4.11)

Together, ¢F,32B are known as the backward least squares estimators.

» Analogously to the forward case, ¢ is the vector which minimises

n—p P 2
SSa(¢) =X —BA|> =D | Xe = > dXers
t=1 k=1
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Least squares for Gaussian mean-zero AR models

Forward-backward least squares

Definition 4.4 (Forward-backward least squares estimators)

The vector $FB that minimises

SS&(e) + SSF(¢) (4.12)

is called the forward-backward least squares estimator.

» Simulation studies indicate that it performs better than forward least
squares or backward least squares.
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Least squares for Gaussian mean-zero AR models

Summary of least squares for AR models

» We have seen three different methods to estimate AR parameters via
least squares.

> (EFBz(ZB and (Z,: produce estimated models which need not be
stationary:

— This may be a concern for prediction (see Lecture 10).
— But for other purposes, e.g. spectral estimation (see Lecture 8), the
parameter values will still produce a valid estimates.

We will see stationarity conditions for AR models in Lecture 4.
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Least squares for general ARMA models
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Least squares for general ARMA models

Least squares for regression type models

» We now consider estimation for ARMA in general.

» We shall estimate them by minimising sums of squares of the
residuals.

» Example: say we have an AR(1) model with an unknown mean

Yi=pu+o(Yi1—p) + e (4.13)

If we were to know p and ¢ then we can work out the random
perturbation by

ee=Ye—pu—0(Yee1—pn), t=2,....n (4.14)
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Least squares for general ARMA models

Least Squares: score equations for AR(1)

We seek estimates of 1 and ¢. We thus minimise the least squares of

n

5(u, @) :ZG% :Z(Yt—ﬂ—¢(yt—1—ﬂ))2-

t=2 t=2

» How do we find estimates of the parameters?

» We use calculus:

M:_2(1—¢)Z(Yt_:u‘_¢(Yt_1_M))’

gz t=2
85?)/;@ = _2Z(Yt = ¢ (Yeer — 1)) (Yee1 — 1) -
t=2

We see that there is one solution to this; ¢ = 1. This is not allowed
as it is non-stationary.

Sofia Olhede (EPFL) Time Series March 12, 2025 23/29



Least squares for general ARMA models

Least Squares: solving the score equations

Thus our estimates satisfy

n

0= (Y- d(Yer-).
t=2

0= (Ye=i-6(Yera =) (Yer - ).
t=2
» We can arrive at closed form expressions:
1 n N n
ﬁ = . =~ Yt - (b Yt—l)
o (T
St Y1 — i {Ye — i}
Y Y- iy
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Least squares for general ARMA models

Summary of the AR case

» For n very large, this is approximately the same as /i ~ Y and qg% Pl

» So in this case the least-squares estimation method gives similar
results as the method of moments.

» This is true for most AR(p) models.

Sofia Olhede (EPFL) Time Series March 12, 2025 25/29



Least Squares for MA models

Now say we want to estimate ¢ in an MA(1) model
Yt — €t — 961-71.

Again we minimise over 6 the sum of squares

n

SO) =Y (Ye+0e1)®.

t=1
But €;_1 is not observed!

» Solution: assume that ¢g = 0 and then, for every 6 we calculate
estimates of {€;} recursively using the formula

€t = Yt + 06t_1.
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Least squares for general ARMA models

Least Squares for MA models: estimating innovations

» Thus

€1 = "1,
€ = Yo + 0éq,
€3 = Y3+ 0é,,

€n=Yn+0€n_1.

» In order to calculate the sum of squares 5(0) we replace the
unobserved errors ¢€; with the estimates &;.
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Least Squares for ARMA models

Consider an ARMA(1,1) model:

v

Yt = d)Yt_]_ + & — HEt_]_.

In this case we can estimate

v

n

S(6,0) =Y (Ye—¢Ye1+ 0z 1)

t=1

» We can estimate the residuals one-by-one recursively
€t =Y —OYr1+ 0t 1.

The recursive estimation is initiated at Yy = ¢g¢ = 0.

v
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Least squares for general ARMA models

Least Squares: takeaways

» This method will work for any ARMA(p, g) model.

» For models that have an MA part, one needs to assume that g terms
are zero.
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