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Lecture outline

1. Yule-Walker (method-of-moments) for AR models

2. Least squares for Gaussian mean-zero AR models

3. Least squares for general ARMA models
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Yule-Walker (method-of-moments) for AR models

Setup

For the first two sections of this lecture, assume that Xt is a mean-zero
causal AR process of order p:

Xt = φ1Xt−1 + φ2Xt−2 + · · ·+ φpXt−p + εt

=

p∑
k=1

φkXt−k + εt ,

where εt
iid∼ N

(
0, σ2

ε

)
is a Gaussian white noise process.

We suppose that we have observed X1, . . . ,Xn and we want to estimate
the parameters φ1, . . . , φp and σ2

ε .
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Yule-Walker (method-of-moments) for AR models

Yule-Walker derivation
To derive the estimation method we start by multiplying through the AR
equation by Xt−k for k > 0

XtXt−k =

p∑
i=1

φiXt−iXt−k + εtXt−k

⇒ E [XtXt−k ] =

p∑
i=1

φiE [Xt−iXt−k ] + E [εtXt−k ]

I Remember the process is causal, so E [εtXt−k ] = 0.
I Furthermore, we have assumed Xt is mean-zero, so

E [Xt−jXt−k ] = γk−j .

I Therefore

γk =

p∑
j=1

φjγk−j (4.1)
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Yule-Walker (method-of-moments) for AR models

Therefore using (4.1) and symmetry of γτ = γ−τ

γ1 = φ1γ0 + φ2γ1 + · · ·+ φpγp−1,

γ2 = φ1γ1 + φ2γ0 + · · ·+ φpγp−2,

...
γp = φ1γp−1 + φ2γp−2 + · · ·+ φpγ0.

(4.2)

I In matrix form we have

γ = Γφ

where γ = (γ1, . . . , γp)
T , and φ = (φ1, . . . , φp)

T and

Γ =


γ0 γ1 . . . γp−1
γ1 γ0 . . . γp−2
...

... . . . ...
γp−1 γp−2 . . . γ0

 .
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Yule-Walker (method-of-moments) for AR models

I If the mean is zero take

γ̂τ =
1
n

n−|τ |∑
t=1

XtXt+|τ |

I We estimate φ via
φ̂ = Γ̂−1γ̂

I Now we just need to estimate σ2
ε . We have

E
[
X2

t
]
= φ1E [XtXt−1] + · · ·+ φpE [XtXt−p] + E [εtXt ] .

I Therefore

γ0 =

p∑
j=1

φjγj + E [εtXt ]
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Yule-Walker (method-of-moments) for AR models

I Furthermore,

εtXt = φ1εtXt−1 + · · ·+ φpεtXt−p + ε2
t

I We take expectations of the left and right hand side and get that

E [εtXt ] = φ1E [εtXt−1] + · · ·+ φpE [εtXt−p] + E
[
ε2
t
]

= φ1 · 0 + · · ·+ φp · 0 + σ2
ε

⇒ γ0 =

p∑
j=1

φjγj + σ2
ε .

I Thus the estimator is σ̂2
ε = γ̂0 −

∑p
j=1 φ̂j γ̂j .
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Yule-Walker (method-of-moments) for AR models

Definition 4.1 (Yule-Walker estimators)

The estimators φ̂p and σ̂2
ε are the Yule-Walker estimators.

φ̂p = Γ̂−1
p γ̂p (4.3)

σ̂2
ε = γ̂0 −

p∑
j=1

φ̂j γ̂j (4.4)

I Inverting Γp naively is O
(
p3), but the Levinson-Durbin algorithm is

O
(
p2) by using the structure of Γp (symmetric Toeplitz matrix).
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Least squares for Gaussian mean-zero AR models

Forward least squares: formulation

In order to formulate a least squares approach we begin from the definition
of an AR process

Xt = φ1Xt−1 + · · ·+ φpXt−p + εt .

Specifically, we can write

Xp+1 = φ1Xp + φ2Xp−1 + · · ·+ φpX1 + εp+1
...

Xn = φ1Xn−1 + φ2Xn−2 + · · ·+ φpXn−p + εn

(4.5)

I Other terms X1, . . . ,Xp have to be discarded, as we do not observe
times before X1.
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Least squares for Gaussian mean-zero AR models

Forward least squares: matrix form
We can rewrite this in matrix form

XF = Fφ+ ε

where

XF =

Xp+1
...

Xn

, φ =

φ1
...
φp

 , ε =

εp+1
...
εn

 ,

and

F =


Xp Xp−1 · · · X1

Xp+1 Xp · · · X2
...

... . . . · · ·
Xn−1 Xn−2 · · · Xn−p

 .
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Least squares for Gaussian mean-zero AR models

Forward least squares: objective function

We can estimate φ by finding the vector which minimises

SS(φ) = ‖XF − Fφ‖2

=
n∑

t=p+1

(
Xt −

p∑
k=1

φkXt−k

)2

=
n∑

t=p+1
ε2
t .

I This is a standard least squares problem.
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Least squares for Gaussian mean-zero AR models

Definition 4.2 (Forward least squares estimators)

We write the minimiser by φ̂F , the estimator takes the form

φ̂F =
(
FT F

)−1 FT XF (4.6)

which is the usual least squares estimator. Finally we may estimate σ2
ε

using standard least squares methods:

σ̂2
F =

∥∥∥XF − Fφ̂F

∥∥∥2
/(n − p − p). (4.7)

Together, φ̂F , σ̂
2
F are known as the forward least squares estimators.
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Least squares for Gaussian mean-zero AR models

Backward least squares: time reversibility
The backward least squares approach is based on the time reversibility
property of a Gaussian AR process.

I In particular, there exists a representation Yt = X−t as an AR process
with the same parameters.

I Specifically,

Yt =

p∑
j=1

φj,pYt−j + ν̃t (4.8)

where ν̃t has the same distribution as εt . Rewriting in terms of Xt ,
with νt = ν̃−t we have

Xt = Y−t =

p∑
j=1

φj,pY−t−j + ν̃−t =

p∑
j=1

φj,pXt+j + νt .

The proof of (4.8) will be given later, using frequency domain methods.
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Least squares for Gaussian mean-zero AR models

Backward least squares: formulation

Now perform the same trick as in the forwards case:

X1 = φ1X2 + φ2X3 + · · ·+ φpXp+1 + ν1
...

Xn−p = φ1Xn−p+1 + φ2Xn−p+2 + · · ·+ φpXn + νn

(4.9)

I This time we are regressing the first n − p values in the time series
against the values at appropriate lags.

I In contrast, the forwards approach used the last n − p values.
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Least squares for Gaussian mean-zero AR models

Backward least squares: matrix form

In matrix form

XB = Bφ+ ν

where

XB =

 X1
...

Xn−p

 , φ =

φ1
...
φp

 , ν =

 ν1
...

νn−p


and

B =


X2 X3 · · · Xp+1
X3 X4 · · · Xp+2
...

... . . . · · ·
Xn−p+1 Xn−p+2 · · · Xn

 .
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Least squares for Gaussian mean-zero AR models

Definition 4.3 (Backward least squares estimators)

We write the minimiser by φ̂B , the estimator takes the form

φ̂B =
(
BT B

)−1 BT XB (4.10)

which is again the least squares estimator. Finally we may estimate
σ2
ε = σ2

ν using standard least squares methods:

σ̂2
B =

∥∥∥XB − Bφ̂B

∥∥∥2
/(n − p − p). (4.11)

Together, φ̂F , σ̂
2
B are known as the backward least squares estimators.

I Analogously to the forward case, φ̂B is the vector which minimises

SSB(φ) = ‖XB − Bφ‖2 =

n−p∑
t=1

(
Xt −

p∑
k=1

φkXt+k

)2

.
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Least squares for Gaussian mean-zero AR models

Forward-backward least squares

Definition 4.4 (Forward-backward least squares estimators)

The vector φ̂FB that minimises

SSB(φ) + SSF (φ) (4.12)

is called the forward-backward least squares estimator.

I Simulation studies indicate that it performs better than forward least
squares or backward least squares.
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Least squares for Gaussian mean-zero AR models

Summary of least squares for AR models

I We have seen three different methods to estimate AR parameters via
least squares.

I φ̂FB , φ̂B and φ̂F produce estimated models which need not be
stationary:
→ This may be a concern for prediction (see Lecture 10).
→ But for other purposes, e.g. spectral estimation (see Lecture 8), the

parameter values will still produce a valid estimates.

We will see stationarity conditions for AR models in Lecture 4.
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Least squares for general ARMA models
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Least squares for general ARMA models

Least squares for regression type models

I We now consider estimation for ARMA in general.
I We shall estimate them by minimising sums of squares of the

residuals.
I Example: say we have an AR(1) model with an unknown mean

Yt = µ+ φ (Yt−1 − µ) + εt . (4.13)

If we were to know µ and φ then we can work out the random
perturbation by

εt = Yt − µ− φ (Yt−1 − µ) , t = 2, . . . , n. (4.14)
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Least squares for general ARMA models

Least Squares: score equations for AR(1)
We seek estimates of µ and φ. We thus minimise the least squares of

S(µ, φ) =
n∑

t=2
ε2
t =

n∑
t=2

(Yt − µ− φ (Yt−1 − µ))2 .

I How do we find estimates of the parameters?
I We use calculus:

∂S(µ, φ)
∂µ

= −2(1 − φ)
n∑

t=2
(Yt − µ− φ (Yt−1 − µ)) ,

∂S(µ, φ)
∂φ

= −2
n∑

t=2
(Yt − µ− φ (Yt−1 − µ)) (Yt−1 − µ) .

We see that there is one solution to this; φ = 1. This is not allowed
as it is non-stationary.
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Least squares for general ARMA models

Least Squares: solving the score equations

Thus our estimates satisfy

0 =
n∑

t=2

(
Yt − µ̂− φ̂ (Yt−1 − µ̂)

)
,

0 =
n∑

t=2

(
Yt − µ̂− φ̂ (Yt−1 − µ̂)

)
(Yt−1 − µ̂) .

I We can arrive at closed form expressions:

µ̂ =
1

(n − 1)(1 − φ̂)

( n∑
t=2

Yt − φ̂

n∑
t=2

Yt−1

)

φ̂ =

∑n
t=2 {Yt−1 − µ̂} {Yt − µ̂}∑n−1

t=1 {Yt − µ̂}2
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Least squares for general ARMA models

Summary of the AR case

I For n very large, this is approximately the same as µ̂ ≈ Ȳ and φ̂ ≈ ρ1.
I So in this case the least-squares estimation method gives similar

results as the method of moments.
I This is true for most AR(p) models.
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Least squares for general ARMA models

Least Squares for MA models

Now say we want to estimate θ in an MA(1) model

Yt = εt − θεt−1.

Again we minimise over θ the sum of squares

S(θ) =
n∑

t=1
(Yt + θεt−1)

2 .

But εt−1 is not observed!
I Solution: assume that ε0 = 0 and then, for every θ we calculate

estimates of {εt} recursively using the formula

εt = Yt + θεt−1.
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Least squares for general ARMA models

Least Squares for MA models: estimating innovations

I Thus

ε̂1 = Y1,

ε̂2 = Y2 + θε̂1,

ε̂3 = Y3 + θε̂2,

...
ε̂n = Yn + θε̂n−1.

I In order to calculate the sum of squares S(θ) we replace the
unobserved errors εt with the estimates ε̂t .
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Least squares for general ARMA models

Least Squares for ARMA models

I Consider an ARMA(1, 1) model:

Yt = φYt−1 + εt − θεt−1.

I In this case we can estimate

S(φ, θ) =
n∑

t=1
(Yt − φYt−1 + θεt−1)

2 .

I We can estimate the residuals one-by-one recursively

εt = Yt − φYt−1 + θεt−1.

I The recursive estimation is initiated at Y0 = ε0 = 0.
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Least squares for general ARMA models

Least Squares: takeaways

I This method will work for any ARMA(p, q) model.
I For models that have an MA part, one needs to assume that q terms

are zero.
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