

Time Series lecture 4

Parametric estimation

Sofia Olhede

March 12, 2025

Lecture outline

1. Yule-Walker (method-of-moments) for AR models
2. Least squares for Gaussian mean-zero AR models
3. Least squares for general ARMA models

Yule-Walker (method-of-moments) for AR models

Setup

For the first two sections of this lecture, assume that X_t is a mean-zero causal AR process of order p :

$$\begin{aligned} X_t &= \phi_1 X_{t-1} + \phi_2 X_{t-2} + \cdots + \phi_p X_{t-p} + \epsilon_t \\ &= \sum_{k=1}^p \phi_k X_{t-k} + \epsilon_t, \end{aligned}$$

where $\epsilon_t \stackrel{iid}{\sim} \mathcal{N}(0, \sigma_\epsilon^2)$ is a Gaussian white noise process.

We suppose that we have observed X_1, \dots, X_n and we want to estimate the parameters ϕ_1, \dots, ϕ_p and σ_ϵ^2 .

Yule-Walker derivation

To derive the estimation method we start by multiplying through the AR equation by X_{t-k} for $k > 0$

$$\begin{aligned} X_t X_{t-k} &= \sum_{i=1}^p \phi_i X_{t-i} X_{t-k} + \epsilon_t X_{t-k} \\ \Rightarrow \mathbb{E}[X_t X_{t-k}] &= \sum_{i=1}^p \phi_i \mathbb{E}[X_{t-i} X_{t-k}] + \mathbb{E}[\epsilon_t X_{t-k}] \end{aligned}$$

- ▶ Remember the process is causal, so $\mathbb{E}[\epsilon_t X_{t-k}] = 0$.
- ▶ Furthermore, we have assumed X_t is mean-zero, so

$$\mathbb{E}[X_{t-j} X_{t-k}] = \gamma_{k-j}.$$

- ▶ Therefore

$$\gamma_k = \sum_{j=1}^p \phi_j \gamma_{k-j} \tag{4.1}$$

Therefore using (4.1) and symmetry of $\gamma_\tau = \gamma_{-\tau}$

$$\begin{aligned}
 \gamma_1 &= \phi_1\gamma_0 + \phi_2\gamma_1 + \cdots + \phi_p\gamma_{p-1}, \\
 \gamma_2 &= \phi_1\gamma_1 + \phi_2\gamma_0 + \cdots + \phi_p\gamma_{p-2}, \\
 &\vdots \\
 \gamma_p &= \phi_1\gamma_{p-1} + \phi_2\gamma_{p-2} + \cdots + \phi_p\gamma_0.
 \end{aligned} \tag{4.2}$$

► In matrix form we have

$$\boldsymbol{\gamma} = \mathbf{\Gamma}\boldsymbol{\phi}$$

where $\boldsymbol{\gamma} = (\gamma_1, \dots, \gamma_p)^T$, and $\boldsymbol{\phi} = (\phi_1, \dots, \phi_p)^T$ and

$$\mathbf{\Gamma} = \begin{pmatrix} \gamma_0 & \gamma_1 & \cdots & \gamma_{p-1} \\ \gamma_1 & \gamma_0 & \cdots & \gamma_{p-2} \\ \vdots & \vdots & \ddots & \vdots \\ \gamma_{p-1} & \gamma_{p-2} & \cdots & \gamma_0 \end{pmatrix}.$$

- If the mean is zero take

$$\hat{\gamma}_\tau = \frac{1}{n} \sum_{t=1}^{n-|\tau|} X_t X_{t+|\tau|}$$

- We estimate ϕ via

$$\hat{\phi} = \hat{\Gamma}^{-1} \hat{\gamma}$$

- Now we just need to estimate σ_ϵ^2 . We have

$$\mathbb{E}[X_t^2] = \phi_1 \mathbb{E}[X_t X_{t-1}] + \cdots + \phi_p \mathbb{E}[X_t X_{t-p}] + \mathbb{E}[\epsilon_t X_t].$$

- Therefore

$$\gamma_0 = \sum_{j=1}^p \phi_j \gamma_j + \mathbb{E}[\epsilon_t X_t]$$

- ▶ Furthermore,

$$\epsilon_t X_t = \phi_1 \epsilon_t X_{t-1} + \cdots + \phi_p \epsilon_t X_{t-p} + \epsilon_t^2$$

- ▶ We take expectations of the left and right hand side and get that

$$\begin{aligned}\mathbb{E}[\epsilon_t X_t] &= \phi_1 \mathbb{E}[\epsilon_t X_{t-1}] + \cdots + \phi_p \mathbb{E}[\epsilon_t X_{t-p}] + \mathbb{E}[\epsilon_t^2] \\ &= \phi_1 \cdot 0 + \cdots + \phi_p \cdot 0 + \sigma_\epsilon^2 \\ \Rightarrow \gamma_0 &= \sum_{j=1}^p \phi_j \gamma_j + \sigma_\epsilon^2.\end{aligned}$$

- ▶ Thus the estimator is $\hat{\sigma}_\epsilon^2 = \hat{\gamma}_0 - \sum_{j=1}^p \hat{\phi}_j \hat{\gamma}_j$.

Definition 4.1 (Yule-Walker estimators)

The estimators $\hat{\phi}_p$ and $\hat{\sigma}_\epsilon^2$ are the Yule-Walker estimators.

$$\hat{\phi}_p = \hat{\Gamma}_p^{-1} \hat{\gamma}_p \quad (4.3)$$

$$\hat{\sigma}_\epsilon^2 = \hat{\gamma}_0 - \sum_{j=1}^p \hat{\phi}_j \hat{\gamma}_j \quad (4.4)$$

- ▶ Inverting Γ_p naively is $O(p^3)$, but the Levinson-Durbin algorithm is $O(p^2)$ by using the structure of Γ_p (symmetric Toeplitz matrix).

Least squares for Gaussian mean-zero AR models

Forward least squares: formulation

In order to formulate a least squares approach we begin from the definition of an AR process

$$X_t = \phi_1 X_{t-1} + \cdots + \phi_p X_{t-p} + \epsilon_t.$$

Specifically, we can write

$$\begin{aligned} X_{p+1} &= \phi_1 X_p + \phi_2 X_{p-1} + \cdots + \phi_p X_1 + \epsilon_{p+1} \\ &\vdots \\ X_n &= \phi_1 X_{n-1} + \phi_2 X_{n-2} + \cdots + \phi_p X_{n-p} + \epsilon_n \end{aligned} \tag{4.5}$$

- ▶ Other terms X_1, \dots, X_p have to be discarded, as we do not observe times before X_1 .

Forward least squares: matrix form

We can rewrite this in matrix form

$$\mathbf{X}_F = \mathbf{F}\phi + \epsilon$$

where

$$\mathbf{X}_F = \begin{pmatrix} X_{p+1} \\ \vdots \\ X_n \end{pmatrix}, \quad \phi = \begin{pmatrix} \phi_1 \\ \vdots \\ \phi_p \end{pmatrix}, \quad \epsilon = \begin{pmatrix} \epsilon_{p+1} \\ \vdots \\ \epsilon_n \end{pmatrix},$$

and

$$\mathbf{F} = \begin{pmatrix} X_p & X_{p-1} & \cdots & X_1 \\ X_{p+1} & X_p & \cdots & X_2 \\ \vdots & \vdots & \ddots & \cdots \\ X_{n-1} & X_{n-2} & \cdots & X_{n-p} \end{pmatrix}.$$

Forward least squares: objective function

We can estimate ϕ by finding the vector which minimises

$$\begin{aligned} \text{SS}(\phi) &= \|\mathbf{X}_F - \mathbf{F}\phi\|^2 \\ &= \sum_{t=p+1}^n \left(X_t - \sum_{k=1}^p \phi_k X_{t-k} \right)^2 \\ &= \sum_{t=p+1}^n \epsilon_t^2. \end{aligned}$$

- ▶ This is a standard least squares problem.

Definition 4.2 (Forward least squares estimators)

We write the minimiser by $\hat{\phi}_F$, the estimator takes the form

$$\hat{\phi}_F = (\mathbf{F}^T \mathbf{F})^{-1} \mathbf{F}^T \mathbf{X}_F \quad (4.6)$$

which is the usual least squares estimator. Finally we may estimate σ_ϵ^2 using standard least squares methods:

$$\hat{\sigma}_F^2 = \left\| \mathbf{X}_F - \mathbf{F} \hat{\phi}_F \right\|^2 / (n - p - p). \quad (4.7)$$

Together, $\hat{\phi}_F, \hat{\sigma}_F^2$ are known as the forward least squares estimators.

Backward least squares: time reversibility

The backward least squares approach is based on the time reversibility property of a Gaussian AR process.

- ▶ In particular, there exists a representation $Y_t = X_{-t}$ as an AR process with the same parameters.
- ▶ Specifically,

$$Y_t = \sum_{j=1}^p \phi_{j,p} Y_{t-j} + \tilde{\nu}_t \quad (4.8)$$

where $\tilde{\nu}_t$ has the same distribution as ϵ_t . Rewriting in terms of X_t , with $\nu_t = \tilde{\nu}_{-t}$ we have

$$X_t = Y_{-t} = \sum_{j=1}^p \phi_{j,p} Y_{-t-j} + \tilde{\nu}_{-t} = \sum_{j=1}^p \phi_{j,p} X_{t+j} + \nu_t.$$

The proof of (4.8) will be given later, using frequency domain methods.

Backward least squares: formulation

Now perform the same trick as in the forwards case:

$$\begin{aligned} X_1 &= \phi_1 X_2 + \phi_2 X_3 + \cdots + \phi_p X_{p+1} + \nu_1 \\ &\vdots \\ X_{n-p} &= \phi_1 X_{n-p+1} + \phi_2 X_{n-p+2} + \cdots + \phi_p X_n + \nu_n \end{aligned} \tag{4.9}$$

- ▶ This time we are regressing the first $n - p$ values in the time series against the values at appropriate lags.
- ▶ In contrast, the forwards approach used the last $n - p$ values.

Backward least squares: matrix form

In matrix form

$$\mathbf{X}_B = \mathbf{B}\phi + \boldsymbol{\nu}$$

where

$$\mathbf{X}_B = \begin{pmatrix} X_1 \\ \vdots \\ X_{n-p} \end{pmatrix}, \quad \phi = \begin{pmatrix} \phi_1 \\ \vdots \\ \phi_p \end{pmatrix}, \quad \boldsymbol{\nu} = \begin{pmatrix} \nu_1 \\ \vdots \\ \nu_{n-p} \end{pmatrix}$$

and

$$\mathbf{B} = \begin{pmatrix} X_2 & X_3 & \cdots & X_{p+1} \\ X_3 & X_4 & \cdots & X_{p+2} \\ \vdots & \vdots & \ddots & \cdots \\ X_{n-p+1} & X_{n-p+2} & \cdots & X_n \end{pmatrix}.$$

Definition 4.3 (Backward least squares estimators)

We write the minimiser by $\hat{\phi}_B$, the estimator takes the form

$$\hat{\phi}_B = (\mathbf{B}^T \mathbf{B})^{-1} \mathbf{B}^T \mathbf{X}_B \quad (4.10)$$

which is again the least squares estimator. Finally we may estimate $\sigma_\epsilon^2 = \sigma_\nu^2$ using standard least squares methods:

$$\hat{\sigma}_B^2 = \left\| \mathbf{X}_B - \mathbf{B} \hat{\phi}_B \right\|^2 / (n - p - p). \quad (4.11)$$

Together, $\hat{\phi}_F, \hat{\sigma}_B^2$ are known as the backward least squares estimators.

- ▶ Analogously to the forward case, $\hat{\phi}_B$ is the vector which minimises

$$\text{SS}_B(\phi) = \left\| \mathbf{X}_B - \mathbf{B} \phi \right\|^2 = \sum_{t=1}^{n-p} \left(X_t - \sum_{k=1}^p \phi_k X_{t+k} \right)^2.$$

Forward-backward least squares

Definition 4.4 (Forward-backward least squares estimators)

The vector $\hat{\phi}_{FB}$ that minimises

$$SS_B(\phi) + SS_F(\phi) \quad (4.12)$$

is called the forward-backward least squares estimator.

- ▶ Simulation studies indicate that it performs better than forward least squares or backward least squares.

Summary of least squares for AR models

- ▶ We have seen three different methods to estimate AR parameters via least squares.
- ▶ $\hat{\phi}_{FB}$, $\hat{\phi}_B$ and $\hat{\phi}_F$ produce estimated models which need not be stationary:
 - This may be a concern for prediction (see Lecture 10).
 - But for other purposes, e.g. spectral estimation (see Lecture 8), the parameter values will still produce a valid estimates.

We will see stationarity conditions for AR models in Lecture 4.

Least squares for general ARMA models

Least squares for regression type models

- ▶ We now consider estimation for ARMA in general.
- ▶ We shall estimate them by minimising sums of squares of the residuals.
- ▶ Example: say we have an AR(1) model with an unknown mean

$$Y_t = \mu + \phi(Y_{t-1} - \mu) + \epsilon_t. \quad (4.13)$$

If we were to know μ and ϕ then we can work out the random perturbation by

$$\epsilon_t = Y_t - \mu - \phi(Y_{t-1} - \mu), \quad t = 2, \dots, n. \quad (4.14)$$

Least Squares: score equations for AR(1)

We seek estimates of μ and ϕ . We thus minimise the least squares of

$$S(\mu, \phi) = \sum_{t=2}^n \epsilon_t^2 = \sum_{t=2}^n (Y_t - \mu - \phi(Y_{t-1} - \mu))^2.$$

- ▶ How do we find estimates of the parameters?
- ▶ We use calculus:

$$\frac{\partial S(\mu, \phi)}{\partial \mu} = -2(1 - \phi) \sum_{t=2}^n (Y_t - \mu - \phi(Y_{t-1} - \mu)),$$

$$\frac{\partial S(\mu, \phi)}{\partial \phi} = -2 \sum_{t=2}^n (Y_t - \mu - \phi(Y_{t-1} - \mu))(Y_{t-1} - \mu).$$

We see that there is one solution to this; $\phi = 1$. This is not allowed as it is non-stationary.

Least Squares: solving the score equations

Thus our estimates satisfy

$$0 = \sum_{t=2}^n \left(Y_t - \hat{\mu} - \hat{\phi}(Y_{t-1} - \hat{\mu}) \right),$$

$$0 = \sum_{t=2}^n \left(Y_t - \hat{\mu} - \hat{\phi}(Y_{t-1} - \hat{\mu}) \right) (Y_{t-1} - \hat{\mu}).$$

- We can arrive at closed form expressions:

$$\hat{\mu} = \frac{1}{(n-1)(1-\hat{\phi})} \left(\sum_{t=2}^n Y_t - \hat{\phi} \sum_{t=2}^n Y_{t-1} \right)$$

$$\hat{\phi} = \frac{\sum_{t=2}^n \{Y_{t-1} - \hat{\mu}\} \{Y_t - \hat{\mu}\}}{\sum_{t=1}^{n-1} \{Y_t - \hat{\mu}\}^2}$$

Summary of the AR case

- ▶ For n very large, this is approximately the same as $\hat{\mu} \approx \bar{Y}$ and $\hat{\phi} \approx \rho_1$.
- ▶ So in this case the least-squares estimation method gives similar results as the method of moments.
- ▶ This is true for most AR(p) models.

Least Squares for MA models

Now say we want to estimate θ in an MA(1) model

$$Y_t = \epsilon_t - \theta \epsilon_{t-1}.$$

Again we minimise over θ the sum of squares

$$S(\theta) = \sum_{t=1}^n (Y_t + \theta \epsilon_{t-1})^2.$$

But ϵ_{t-1} is not observed!

- ▶ Solution: assume that $\epsilon_0 = 0$ and then, for every θ we calculate estimates of $\{\epsilon_t\}$ recursively using the formula

$$\epsilon_t = Y_t + \theta \epsilon_{t-1}.$$

Least Squares for MA models: estimating innovations

- ▶ Thus

$$\hat{\epsilon}_1 = Y_1,$$

$$\hat{\epsilon}_2 = Y_2 + \theta \hat{\epsilon}_1,$$

$$\hat{\epsilon}_3 = Y_3 + \theta \hat{\epsilon}_2,$$

$$\vdots$$

$$\hat{\epsilon}_n = Y_n + \theta \hat{\epsilon}_{n-1}.$$

- ▶ In order to calculate the sum of squares $S(\theta)$ we replace the unobserved errors ϵ_t with the estimates $\hat{\epsilon}_t$.

Least Squares for ARMA models

- ▶ Consider an ARMA(1, 1) model:

$$Y_t = \phi Y_{t-1} + \varepsilon_t - \theta \varepsilon_{t-1}.$$

- ▶ In this case we can estimate

$$S(\phi, \theta) = \sum_{t=1}^n (Y_t - \phi Y_{t-1} + \theta \varepsilon_{t-1})^2.$$

- ▶ We can estimate the residuals one-by-one recursively

$$\varepsilon_t = Y_t - \phi Y_{t-1} + \theta \varepsilon_{t-1}.$$

- ▶ The recursive estimation is initiated at $Y_0 = \varepsilon_0 = 0$.

Least Squares: takeaways

- ▶ This method will work for any ARMA(p, q) model.
- ▶ For models that have an MA part, one needs to assume that q terms are zero.