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ARMA polynomial notation

ARMA recap

▶ Recall that an ARMA process has the following form

Xt =

p∑
j=1

ϕjXt−j −
q∑

k=0

θkεt−k

where {εt} is a mean-zero white noise process and θ0 = −1.

▶ We could rewrite this as

p∑
j=0

ϕjXt−j =

q∑
k=0

θkεt−k (3.1)

where ϕ0 = −1.

▶ This is elegant, but we can simplify things a little further with the
help of the backshift operator.
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ARMA polynomial notation

The backshift operator

Definition 3.1 (The backshift operator)

Define the backshift operator as a map from one time series {Xt} to
another time series, say {yt} which simply shifts the first series back one
step in time. Formally write

{Yt} = B[{Xt}]

then for all t ∈ Z we have

Yt = Xt−1.

▶ Often we will use the informal notation BXt to refer to B[{Xt}].
▶ Note that applying the backshift multiple times will shift the series by
multiple lags (i.e. the operator Bk shifts by k lags).
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ARMA polynomial notation

MA and the backshift operator

Take the MA(q) example, we can write this as

Xt =

q∑
k=0

θkεt−k (3.2)

=

q∑
k=0

θkB
kεt (3.3)

= Θ(B)εt (3.4)

where Θ is the polynomial given by

Θ(z) =

q∑
k=0

θkz
k . (3.5)
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ARMA polynomial notation

ARMA and the backshift operator

Now we can apply the same trick for the general ARMA(p, q) process, and
write

Φ(B)Xt = Θ(B)εt (3.6)

to specify the ARMA process, where

Θ(z) =

q∑
k=0

θkz
k , (3.7)

Φ(z) =

p∑
j=0

ϕjz
j . (3.8)

Later in the lecture, we shall explore how properties of the polynomials Θ
and Φ relate to properties of the resultant process.
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Wold decomposition

Linear combinations of white noise

So far, we have seen finite combinations of white noise processes, but we
may want to consider something more general:

Xt =
∞∑

k=−∞
gkεt−k , ∥g∥22 < ∞. (3.9)

where {gk} is a real valued sequence and {εt} is mean-zero white noise.

▶ We have for all t, τ ∈ Z

E [Xt ] = 0, (3.10)

Var (Xt) = ∥g∥22 Var (ϵt) < ∞, (3.11)

Cov (Xt ,Xt+τ ) =
∞∑

k=−∞
gkgk+τ Var (εt) . (3.12)
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Wold decomposition

Definition 3.2 (General linear process)

If in (3.9) we set g−1, g−2, · · · = 0, then we obtain a
general linear process:

Xt =
∞∑
k=0

gkεt−k , ∥g∥22 < ∞, (3.13)

▶ Now Xt depends only on the past and the present, making this into a
causal process.

▶ The same more general equations for mean and autocovariance apply,
so the process is stationary.
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Wold decomposition

Theorem 3.3 (Wold Decomposition Theorem)

Any stationary process {Xt} can be expressed in the form:

Xt = Ut + Vt ,

with Ut and Vt uncorrelated such that

▶ Ut has a one–sided linear representation

Ut =
∞∑
k=0

gkεt−k ,

with g0 = 1, ∥g∥22 < ∞ and εt a mean-zero white noise process uncorrelated
with Vt so that ∀s, t E [εsVt ] = 0. The sequences {gu} and {εt} are then
uniquely determined.

▶ Vt is singular (can be predicted from its own past with no error).
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Wold decomposition

▶ To study such processes, we introduce the function G (z):

G (z) =
∞∑
k=0

gkz
k ,

so that Xt = G (B)εt .

▶ We represent G (z) via its Laurent series (a fancy Taylor series) but
will first study it as a ratio:

G (z) =
G1(z)

G2(z)
.

▶ Note that the roots of G1(z) are the roots or zeros of G (z) and the
roots of G2(z) are the poles of G (z).

▶ Call the zeros of G2(z) z1, z2, . . . zp ordered so that z1, z2, . . . zk are
inside the unit circle |z | = 1 and zk+1, . . . , zp are outside the unit
circle |z | = 1.
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Wold decomposition

▶ With this specification the Laurent expansion gives us

1

G2(z)
=

p∑
j=1

Aj

z − zj

=
k∑

j=1

Aj

z

∞∑
l=0

(zj
z

)l
−

p∑
j=k+1

Aj

zj

∞∑
l=0

(zj
z

)−l
.

This expansion is convergence on |z | = 1. We can therefore replace z
by B and arrive at

1

G2(B)
εt =


k∑

j=1

AjB
−1

∞∑
l=0

z ljB
−l −

p∑
j=k+1

Aj

∞∑
l=0

z
−(l+1)
j Bl

 εt

=


k∑

j=1

Aj

∞∑
l=0

z ljB
−l−1 −

p∑
j=k+1

Aj

∞∑
l=0

z
−(l+1)
j Bl

 εt .
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Wold decomposition

▶ It therefore follows that

1

G2(B)
εt =

k∑
j=1

Aj

∞∑
l=0

z lj εt+1+l︸ ︷︷ ︸
future

−
p∑

j=k+1

Aj

∞∑
l=0

z
−(l+1)
j εt−l︸︷︷︸

past+now

.

Hence if all the roots of G2(z) are outside the unit circle then only
past and present values of Xt are involved. Then the general linear
process exists.

▶ Another way of stating this is that |G (z)| < ∞ for |z | ≤ 1. This
means that G (z) is analytic inside and on the unit circle.

▶ If a particular value of εt affects Xt and all subsequent Xt then we say
this is an innovations outlier.
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Stationarity and invertibility of ARMA processes

Stationarity and invertibility of ARMA processes

Sofia Olhede (EPFL) Time Series March 5, 2025 15 / 22



Stationarity and invertibility of ARMA processes

▶ Consider the MA(q) model in this setting. Then

Xt = Θ(B)εt = εt − θ1,qεt−1 − · · · − θq,qεt−q.

Thus we have in the general linear process representation:

Xt = Θ(B)εt ⇔ Θ−1(B)Xt = εt .

▶ Similarly for the AR model we may write

Φ(B)Xt = εt .

Here Φ(B) has a finite order but Φ−1(B) has an infinite order.
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Stationarity and invertibility of ARMA processes

▶ Invertibility: Consider inverting the general linear process

Xt = G (B)εt ⇒ G−1(B)Xt = εt .

▶ The expansion of G−1(B) in powers of B gives its AR form provided
that G−1(B) admits a power expansion

G−1(z) =
∞∑
k=0

hkz
k ,

and that must be analytic on |z | ≤ 1.

▶ For a general linear process the model is invertible if |G−1(z)| < ∞
for |z | ≤ 1.

▶ This means all the poles of G−1(z) are outside the unit circle.

▶ Xt = G (B)εt is the general linear model. If the poles of G (z) are
outside the unit circle, then the zeros of G−1(z) are inside the unit
circle.
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Stationarity and invertibility of ARMA processes

▶ For the MA(q) process we have G (B) = Θ(B).

▶ For the AR(p) process we have Φ(B)Xt = εt .

▶ Thus

Xt = Φ−1(B)εt = G (B)εt

⇒ G (z) = Φ−1(z).

▶ Thus in this scenario (AR) the requirement for stationarity is that the
roots of Φ(z) are outside the unit disc.

▶ For the MA(q) process we have

Xt = Θ(B)εt = G (B)εt .

Thus since Θ(B) = G (B) is a polynomial of finite order with have
|G (z)| < ∞ as long as all parameters are finite.
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Stationarity and invertibility of ARMA processes

Summary of stationarity and invertibility of ARMA models

We can therefore summarise our understanding as follows:

▶ An AR(p) must have the roots of Φ(z) outside |z | = 1 to be
stationary. It is always invertible.

▶ An MA(q) is always stationary but must have the roots of Θ(z)
outside |z | = 1 to be invertible.

▶ An ARMA(p, q) must have the roots of Φ(z) outside |z | = 1 to be
stationary, and must have the roots of Θ(z) outside |z | = 1 to be
invertible.
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Stationarity and invertibility of ARMA processes

Characteristic polynomials

Definition 3.4

Recall we can write an ARMA model as

Φ(B)Xt = Θ(B)εt .

We call

▶ Φ(z) the characteristic polynomial of the autoregressive part,

▶ Θ(z) the characteristic polynomial of the moving average part.

In the specific cases of MA and AR models, this will be shortened to
characteristic polynomial, i.e.

▶ For an AR, Φ(B)Xt = εt , the characteristic polynomial is Φ(z).

▶ For an MA, Xt = Θ(B)εt the characteristic polynomial is Θ(z).
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Stationarity and invertibility of ARMA processes

ARMA Example

Consider the following example, let

{I− B+
1

4
B2}Xt = {I+ B}εt . (3.14)

Determine the auto-covariance of Xt assuming {εt} is white noise.

▶ We can cross–multiply equation (3.14) by Xt−τ for τ ≥ 2. We then
arrive at

XtXt−τ − Xt−1Xt−τ +
1

4
Xt−2Xt−τ = εtXt−τ + εt−1Xt−τ .

Taking expectations we arrive at

γτ − γτ−1 +
1

4
γτ−2 = 0.

▶ This leaves τ = 0, 1 to figure out. This must be done separately.
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Stationarity and invertibility of ARMA processes

▶ If we set τ = 0 then we get

X 2
t − Xt−1Xt +

1

4
Xt−2Xt = εtXt + εt−1Xt .

Then taking expectations we get that

γ0 − γ1 +
1

4
γ2 = σ2 + 2σ2.

Similarly for τ = 1

γ1 − γ0 +
1

4
γ1 = σ2.

A general solution will be of the format

γτ = {β10 + β11τ}2−τ , τ > 0,

and by using the initial conditions we may recover the constants.
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