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White noise

Sofia Olhede (EPFL) Time Series February 26, 2025 3/21



Example of stationary process: white noise

Definition 2.1

An example of a stationary process is a white noise, also known as a purely
random process. This corresponds to a sequence {X:} of uncorrelated RVs
such that for all t € Z

E[X] =0, Var(X;)=0?< occ.

o2 ifr=0,
Tr = .
0  otherwise,

In this case

or equivalently

_J1 ifr =0,
pr= 0 otherwise.

White noise is a building block for other time series models.
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Figure: A simulated realisation of a white noise process (left) and true ACF
(right)
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Moving average models

Moving average models J

Sofia Olhede (EPFL) Time Series February 26, 2025 6/21



Moving average models

Moving average processes (MA)

Definition 2.2 (MA(q))
Let {¢+} be a mean-zero white noise process. Then we define the
g-th order moving average process, denoted MA(q), as

q
Xt :M_Zejst—ja (2.1)
=0

where 0; are constants such that §p = —1 and 6 # 0.

» All we have done is taken a noisy process and averaged consecutive
values.
» This isn't necessarily smoother than the original!
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Moments of MA(q)

We can calculate the moments of this process.
» We find for the expectation that

E[X] = p.

» Now for the covariance, let 6; = 0 for j > g, then

q
025600, if 7] < q,

Cov (Xt+T7 Xt) B SJE:O ! J—H l

0 otherwise.

Therefore, the only constraint for stationarity is that |6;] < co.
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Moments of MA(q): computation

q
k=0 j=0

q
Cov (Xegr, X¢) = Cov (u D Okt pi— Y OEe
q
0;0k Cov (€¢qr—k,Et—j)

q
=o? Z > 00kl

q
j=0 k=0

To find the terms which survive consider 0 < 7 < g, we see that for a given
j only terms k = j + 7 survive. The full result follows from symmetry.
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Moving average models
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Figure: A simulated realisation of an MA(2) process (left) and true ACF (right)
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An MA(1) example

Consider an MA(1) with zero mean, with £ a mean-zero white noise with

2

variance o;

Xt =&t — 951'71.
The autocovariance of {X;} is given by
o2 (1+6?) ifr=0,

Yr =14 —020 if |[7]=1,

0 otherwise.

Sofia Olhede (EPFL) Time Series February 26, 2025

11/21



Moving average models

Now consider a different white noise process {n;} with variance o2 = 0262

n
and define
1

Ye =10t — 2M¢t—1.
t t 0 t—1
Write 4, for the ACVS of {Y;}, then

~ 202 12
"}/0:0'59 1—1—5

=o? (1+ 92)
1= —020°/0

_ 2
=—o020

and -1 = 91 and the remainder being zero. So {5} = {7-} and we
cannot identify the two processes from the autocovariance sequence.
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Autoregressive models

Autoregressive models J
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Autoregressive models

Autoregressive process of order p, AR(p)

Definition 2.3

Let {e;} be a mean-zero white noise process. Then we define the
p-th order autoregressive process, denoted AR(p), as

P
Xe = ¢iXej+et, (2.4)
j=1

where ¢; are constants such that ¢, # 0.

» In contrast with the moving average process, we have constraints on
{¢;} to obtain a stationary process (see lecture 4).
» We also cannot give a nice closed form for the autocovariance in

general.
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AR(1) example
Say that we have an AR(1) process, so that
Xe = ¢Xi—1 + €.
Assume that |¢| < 1. Then we may iterate and informally find that:

Xe = ¢ (pXe—2 +€¢-1) + &4
= ¢2Xt—2 + Per_1 + €t
= ¢3Xt—3 + ¢25t—2 + per_1 + et

oo
k
= Z P er—k-
k=0

This statement can be made formally correct under certain conditions, where the equality can be seen to hold with
probability one.
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Autoregressive models

Note that the mean and covariance is given by

E[X] = i pk-0=0. (2.5)

k=0

Cov (Xegr, Xt) = Z Zqﬁkﬂ Cov (gj4+,€k)
k=0 j=0

o0
_ 2 2k+|T
_J€Z¢ 7]
k=0

o2

= _5¢2¢‘T|. (2.6)
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Autoregressive models
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Figure: A simulated realisation of a AR(1) (left) and true ACF (right)
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ARMA

ARMA
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Auto-regressive Moving Average Process ARMA(p, q)

Definition 2.4 (ARMA(p, q))
A time series {X:} is an autoregressive moving average process of order p
and g, denoted ARMA(p, q), if

P q
Xe=> ¢iXej— > Okeri
=1 k=0

where {e:} is a mean-zero white noise process, and ¢;, 0 are the same as
in the AR and MA cases respectively.

» Again we will have conditions on the AR parameters in order for this
to be a valid model.

» Again general closed forms for the autocovariance aren’t obtainable
(though techniques to compute the autocovariance exist).
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ARMA
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Figure: A simulated realisation of a ARMA process (left) and true ACF (right)
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ARMA

Causal Process

Definition 2.5 (Causal ARMA(p, q))

An ARMA(p, q) process is said to be causal (or more specifically to be a
causal function of {e;}) if there exists a sequence of constants {t);} such

that 324 [4;] < oo and

Xe=> djerj, t=0,41,...

Jj=0

» A mean-zero MA(q) process is always causal.
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