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Practical

Practical information
I Problem sheets, solutions, slides and lecture notes will be uploaded on

Moodle.
I There is an exam in the summer for the course, and a midterm

assessed coursework.

Course topics
I ARIMA models
I Frequency domain analysis
I Forecasting
I ARCH models
I Multivariate Time Series
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Practical

Useful resources

I Brockwell, P. J. and Davis, R. A. (2002). Introduction to time series
and forecasting.
Springer

I Shumway, R. H., Stoffer, D. S., and Stoffer, D. S. (2000). Time series
analysis and its applications, volume 3.
Springer

I Tsay, R. S. (2005). Analysis of financial time series.
John Wiley & Sons

I Percival, D. B. and Walden, A. T. (1993). Spectral analysis for
physical applications.
Cambridge University Press
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Motivation

Dependence

In basic data analysis we assume that observations are independent or
even independent and identically distributed,

X1, . . . ,Xn
ind∼ F1, . . . ,Fn, X1, . . . ,Xn

iid∼ N
(
µ, σ2) .

I Time series is the study of observations that arise in some order
(usually time) and so are dependent.

I There are many more ways to be dependent than to be independent,
and almost all data are collected in time order, so time series arise in
a vast range of disciplines.

I Many of these disciplines have developed special techniques to deal
with their specific problems, and we will only scratch the surface of
them in this course, by surveying some main ideas.
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Motivation
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Figure: Atmospheric CO2 concentration at Mauna Loa Observatory.

Sofia Olhede (EPFL) Time Series February 19, 2025 8 / 38



Motivation
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Figure: Seismic traces from the Feb. 9th, 1991 Solomon Islands earthquake as
measured from the Pasadena recording station in California.
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Motivation

Figure: Gross domestic product (USA), (Zimbabwe).
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Motivation

Figure: Gross domestic product (Switzerland) and (Sweden).
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Motivation

Example of dependent data: drifting buoys

Image from the Global Drifter Programme, NOAA Atlantic Oceanographic and Meteorological Laboratory.
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Motivation

Drifting buoys, time evolution
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Figure: Measurements of velocity (cm/s) and position from a buoy.
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Motivation

Unobserved Components Models

I In econometrics for example, the notion that a time series is an
aggregation of different phenomenological behaviours is common.

trend

+

seasonal

+

irregular

=

observed
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Basic Notation

What is a time series?

I Informally, a time series Xt is just data recorded over time.
I We shall use the word ‘time series’ to mean both the data, and

the process from which the data is a realisation.
I More formally, we think of Xt as a stochastic process, i.e. as a family

of random variables {Xt : t ∈ T } defined on a probability space
(Ω,F ,P).

I In time series analysis the index (or parameter) set T is a set of time
points, very often R or ∆Z (or a subset of them).

I Here ∆ ∈ R is the time step between observations.
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Basic Notation

What is a time series practically?

I Whilst it is mathematically useful to think of processes with infinite
index sets, in practice we can only make finitely many observations.

I Therefore, the set of observations Xt we actually record are in some
set of time points S ⊂ T .

I Normally S is a discrete set (often with a regular sampling interval)
{∆, . . . , n∆}.

I The time series may also be recorded over an interval S = [0,T0]
(though it obviously cannot be stored digitally in this way directly).
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Basic Notation

Kolmogorov’s theorem
Let F := {t = (t1, . . . , tn)

T ∈ T n : t1 < · · · < tn, n = 1, 2, . . . }. Then
the (finite-dimensional) distribution functions of {Xt}t∈T are the functions
{Ft(·), t ∈ T n} defined by

Ft(x) = Pr (Xt1 ≤ x1, . . . ,Xtn ≤ xn) , x = (x1, . . . , xn)
T ∈ Rn.

Theorem 1.1 (Kolmogorov’s theorem)
The probability distribution functions {Ft(·), t ∈ F} are the distribution
functions of a given stochastic process if and only if for any natural
number n and t ∈ F and 1 ≤ i ≤ n we have

lim
xi→∞

Ft(x) = Ft(i)(x(i)),

where we have defined t(i) and x(i) as the (n − 1)-component vectors
obtained by deleting the ith component of t and x respectively.
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Stationarity

Stationarity
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Stationarity

Weak stationarity

Definition 1.2 ((Weak) Stationarity)
The time series {Xt} is said to be second-order/weak or covariance
stationary if for all n ≥ 1 for any t1, . . . , tn ∈ T and for all τ such that
t1 + τ, . . . , tn + τ ∈ T all the joint moments of order 1 and 2 of
Xt1 , . . . ,Xtn exist, are all finite and equal to the corresponding joint
moments of Xt1+τ , . . . ,Xtn+τ .

In fact this corresponds to that, for all t, s, τ ∈ T
1. E [Xt ] = µ,
2. Var (Xt) = σ2 < ∞,
3. E [XtXt+τ ] = E [XsXs+τ ].

One may deduce from this that E [XtXt+τ ] can be written as a function of
τ only.
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Stationarity

Strong stationarity

We can go beyond the first two moments and define strong stationarity.

Definition 1.3 (Strong Stationarity)
The time series {Xt} is said to be completely/strong or strictly stationary
if for all n ≥ 1 for any t1, . . . , tn ∈ T and for all τ such that
t1 + τ, . . . , tn + τ ∈ T the joint distribution of Xt1 , . . . ,Xtn is the same as
Xt1+τ , . . . ,Xtn+τ .

In general:
I second order stationary ; strictly stationary,
I strict stationarity ; 2nd order stationarity.

For example iid student t with non-finite variance.
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Stationarity

Gaussian processes

Definition 1.4 (Gaussian processes)
A stochastic process is called a Gaussian process if, for all n ≥ 1 and for
any t1, . . . tn ∈ T , the joint distribution of Xt1 , . . . ,Xtn is multivariate
normal.

I In other words, the distribution of the process at any finite collection
of time points is multivariate normal.

I Gaussian processes are then completely characterised by their first two
moments (which are finite).

I Thus for Gaussian processes, strong stationarity and weak stationarity
are the same!
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Dependence
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Dependence

Measures of dependence

I As we discussed earlier, often in statistics one works with collections
of independent observations.

I Here, we do not have independent data.
I To understand dependence better for finite collections of random

variables, we often compute their covariance matrix.
I For a time series {Xt} the extension of the covariance matrix

corresponds to the autocovariance function.
I We usually only have one time series, but if the process is stationary

we might hope to still be able to do some kind of averaging.
I For notational simplicity, assume that ∆ = 1 for the remainder of this

lecture.
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Dependence

Autocovariance Sequence (ACVS)

Definition 1.5 (ACVS)
For a discrete time second-order stationary process {Xt} we define the
autocovariance sequence (ACVS) by

γτ = Cov (X0,Xτ ) , (1.1)

where τ ∈ Z is the lag.

I By stationarity, we have γτ = Cov (Xt ,Xt+τ ) for any t ∈ Z.
I Clearly γ0 = Var (Xt) and γ−τ = γτ .
I But how do we estimate this from a single realisation?
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Dependence

Estimating the ACVS: moment matching

I A natural estimator for the acvs is based on matching moments, i.e.

γ̃τ =

{
1

n−|τ |
∑n−|τ |

t=1 (Xt − X̄)(Xt+|τ | − X̄) if |τ | ≤ n − 1,
0 otherwise.

(1.2)

I If we knew the true mean µ, and replace the sample mean by this we
obtain for |τ | ≤ n − 1

E [γ̃τ ] =
1

n − |τ |

n−|τ |∑
t=1

E
[
(Xt − µ)(Xt+|τ | − µ)

]
= γτ . (1.3)

I However, γ̃τ is not always non-negative definite, motivating a slightly
different estimator.
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Dependence

Estimating the ACVS: a non-negative definite estimate

Definition 1.6 (The sample autocovariance)
Given observations of a time series X1, . . . ,Xn. We define the
sample autocovariance to be

γ̂τ =

{
1
n
∑n−|τ |

t=1 (Xt − X̄)(Xt+|τ | − X̄) if |τ | ≤ n − 1,
0 otherwise,

(1.4)

where X̄ is the sample mean.

I Again in the known mean case

E [γ̂τ ] =
n − |τ |

n γτ , (1.5)

for |τ | ≤ n − 1, which is biased.
I But, γ̂τ is non-negative definite.
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Dependence

Autocorrelation sequence (ACF)

Definition 1.7 (ACF)
The autocorrelation sequence, usually called autocorrelation function,
(ACF) is defined as

ρτ = Corr (Xt ,Xt+τ ) , (1.6)

for τ ∈ Z.

I We have ρτ = γτ/γ0.
I Even though it is a sequence, it is still usually referred to as the

autocorrelation function.
I Estimation uses the plug in estimator

ρ̂τ = γ̂τ/γ̂0. (1.7)
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Dependence

Example time series vs sample ACF
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Figure: Simulated time series and their sample ACF.
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Dependence

ACVS is positive semi-definite

Theorem 1.8
The sequence {γτ} is positive semi-definite, that is for all n ≥ 1 for any
t1, . . . , tn ∈ Z and for any a1, . . . , an ∈ R we have

n∑
j=1

n∑
k=1

ajakγj−k ≥ 0. (1.8)

Proof.
Consider the random variable W =

∑n
j=1 ajXj . Now we have

0 ≤ Var (W ) =
n∑

j=1

n∑
k=1

ajak Cov (Xj ,Xk) =
n∑

j=1

n∑
k=1

ajakγj−k

as required.
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Dependence

The impact of dependence on estimation
I In estimation we will only have a single realisation available.
I We will use a time-average to give time replication, as we saw in the

estimation of the autocovariance.
I However, we have yet to examine the effect of the dependence on our

estimates.
I Assume that the autocovariance satisfies

∞∑
τ=−∞

|γτ | < ∞.

I Define

X̄ =
1
n

n∑
i=1

Xi .

I What are the properties of this estimator?

E
[
X̄
]
=

1
n

n∑
i=1

E [Xi ] = µ.

I So X̄ is unbiased as an estimator of µ.
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Dependence

I What about the variance? We say that X̄ will converge to µ in mean
square if

lim
n→∞

Var
(
X̄
)
= 0.

I How do we figure this out?
I We calculate

Var
(
X̄
)
= E

[
(X̄ − µ)2]

= E

(1
n

n∑
i=1

Xi − µ

)2


=
1
n2

n∑
i,j=1

E [(Xi − µ)(Xj − µ)] .

How can we simply this?
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Dependence

I We need to acknowledge the correlation in the process. If the
covariance was σ2 everywhere then we could not have mean square
convergence.

I We find that

Var
(
X̄
)
=

1
n2

n∑
i,j=1

E [(Xi − µ)(Xj − µ)]

=
1
n2

n∑
i,j=1

γj−i

=
1
n2

n−1∑
τ=−(n−1)

(n − |τ |)γτ

I We now need the Césaro summability theorem which says that if∑n−1
τ=−(n−1) γτ converges to a limit then

∑n−1
τ=−(n−1)

(n−|τ |)
n γτ

converges to the same limit.
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Dependence

I Thus

lim
n→∞

nVar
(
X̄
)
= lim

n→∞

n−1∑
τ=−(n−1)

(n − |τ |)
n γτ

= lim
n→∞

n−1∑
τ=−(n−1)

γτ

=
∞∑

τ=−∞
γτ

= C (γ)

say.
I Now we know that C (γ) < ∞ by assumption, therefore

lim
n→∞

Var
(
X̄
)
= 0.
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Dependence

I We just showed that the sample mean was consistent, e.g. X̄ P→ µ, if
the autocovariance satisfies

∑
τ |γτ | < ∞.

I Seems like a general idea: “when can we replace a sample average by
a population average”? But what about the correlation? Does it
matter? Does it change things?

I For example, consider the AR(1) process:

Xt = φXt−1 + εt ,

for X0 ∼ N
(

0, 1
1−φ2

)
. Can we always average this? Do other

statistical operations? What happens as φ changes?
I (Note we will see more on the AR process next week!)
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Dependence

Effect of correlation on mean estimates
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Figure: Density estimates of the distribution of the sample mean for different
AR(1) processes. Time series of length 30.
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Dependence

Definition 1.9 ((Mean) Ergodic)
The time series {Xt} is said to be mean ergodic if its first and second
moments are finite and

lim
n→∞

X̄ P→ E [Xt ] .

I The funny squiggle P→ means “converges in probability” and
informally it implies that the mean stabilises as the expectation tends
to a constant and the variance goes to zero.

I The concept can be generalised to the d th moment for d ≥ 2, not
just for the mean.

I The informal understanding of this is “sample means converge to
population means”, or “temporal averages are equivalent to
population averages”.

I Ergodicity and stationarity are not equivalent. The former concept is
popular in econometrics.
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