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Exercise 10.1
Let εt be a white noise process. Show that the best one-step-ahead predictors for the causal AR(2) process

Xt = ϕ1Xt−1 + ϕ2Xt−2 + εt

based on one observation X1 and on two observations X1, X2 are

X1
2 =

γ1
γ0
X1 = ρ1X1, X2

3 = ϕ1X2 + ϕ2X1.

Solution 10.1
For the one-step-ahead best linear predictor based on X1, we use the theorem on prediction equations seen in
the course, we get γ0β1 = γ1, which leads to

X1
2 =

γ1
γ0
X1 = ρ1X1.

For the one-step-ahead best linear predictor based on X1, X2, we could try to reuse the theorem and build the
matrix Γn. Instead, we notice that X3 = ϕ1X2 + ϕ2X1 + ε3 implies that X3 − ϕ1X2 + ϕ2X1 = ε3. Because εt
is a white noise process, we get

E [(X3 − ϕ1X2 + ϕ2X1)X1] = E [ε3X1] = 0

E [(X3 − ϕ1X2 + ϕ2X1)X2] = E [ε3X2] = 0,

which implies that X2
3 = ϕ1X2 + ϕ2X1.

Exercise 10.2
Theorem. For a stationary process {Xt}, Xn

n+h is found by solving for β0, . . . , βn the prediction equations

E
[(
Xn+h −Xn

n+h

)
Xk

]
= 0, k = 0, . . . , n,

where X0 = 1, and Xn
n+h = β0 +

∑n
j=1 βjXj. Let µ = E [Xt].

The βj are then given by the solution of the system of equations

Γnβ = γ[h], β0 = µ
(
1− βT1n

)
with

Γn =


γ0 γ1 . . . γn−1

γ1 γ0 . . . γn−2

...
...

. . .
...

γn−1 γn−2 . . . γ0

 ,β =


β1
β2
...
βn

 , and γ[h] =


γn+h−1

γn+h−2

...
γh

 . (1)

1. Prove the above theorem

(a) Express the mean prediction error of Xn
n+h in matrix form in terms of Var (X), β and β0.
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(b) Find the expression of β0 by using the properties of the best linear predictor.

(c) Explain why there is no loss of generality in considering µ = 0. What is then the value of β0?

(d) Show that if µ = 0, then the best linear predictor satisfies

Var (X)β = Cov (Xn+h,X) . (2)

(e) Show that the prediction equations for k = 1, . . . , n are equivalent to (2). Explain how you found
the prediction equation for k = 0 in the previous steps.

2. Assume Γn is invertible.

(a) Express Xn
n+h in matrix form. How does it differ from the result seen in the lecture (e.g. µ = 0)?

(b) What is the prediction mean squared error? How does it differ from the result seen in the lecture?

Solution 10.2
1. (a) The mean prediction error

S (β0, . . . , βn) = E


Xn+h − β0 −

n∑
j=1

βjXj

2


= E
[(
Xn+h − β0 − βTX

)2]
= Var

(
Xn+h − β0 − βTX

)
+ E

[
Xn+h − β0 − βTX

]2
= γ0 − 2βT Cov (Xn+h,X) + βT Var (X)β +

(
µ− β0 − µβT1n

)2
is a quadratic function bounded below by zero, so it certainly has a minimum that satisfies the
equations ∂S/∂βr = 0 for r = 0, . . . , n.

(b) The first equation ∂S/∂β0 = 0 gives

∂S

∂β0
= 2β0 − 2

(
µ− µβT1n

)
= 0 =⇒ β0 = µ

(
1− βT1n

)
.

(c) Hence the form of the best linear predictor is Xn
n+h = β0 + βTX = µ+ βT (X − µ1n). Thus there

is no loss of generality in considering µ = 0 in which case β0 = 0 and Xn
n+h = βTX.

(d) When µ = 0,
S(β) = γ0 − 2βT cov (Xn+h,X) + βT var(X)β.

We differentiate S(β) to find the matrix equation var(X)β = cov (Xn+h,X) as stated in the theorem.

(e) This matrix equation may be rewritten as the prediction equations, the first of which, for β0, gives
µ−β0 −

∑n
j=1 βjµ = 0, and hence the required form for β0. The other equations for k = 1, . . . , n are

obtained by noting that

E

Xn+h −
n∑

j=1

βjXj

Xk

 = 0 ⇐⇒ γn+h−k =

n∑
j=1

βjγjk, k = 1, . . . , n,

which is equivalent to the matrix equation (write Var (X)β = Cov (Xn+h,X) and identify each row
equation).

2. (a) If Γn is invertible, then we have β = Γ−1
n γ[h], which leads to

Xn
n+h = µ+ γT

[h]Γ
−1
n (X − µ1n) .
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(b) Since
E
[
Xn+h −Xn

n+h

]
= 0,

the prediction mean square error is

Var
(
Xn+h −Xn

n+h

)
= Var

(
Xn+h − βTX

)
= γ0 − 2βTγ[h] + βTΓnβ = γ0 − γh TΓ−1

n γ[h],

which is the same as in the zero-mean case.

Exercise 10.3
Prove the following theorem

Theorem. The best linear predictor Xn
n+h for Xn+h in a causal ARMA process with general linear representa-

tion
∑∞

j=0 ψjεt−j is

Xn
n+h =

∞∑
j=h

ψjεn+h−j = ψhεn + ψh+1εn−1 + · · · .

The corresponding prediction mean square error is σ2
∑h−1

j=0 ψ
2
j .

Solution 10.3
We consider the linear predictor Xn

n+h =
∑n

i=1 βiXi, and on noting the linear representation Xt =
∑∞

j=0 ψjεt−j ,
we see that we can write

Xn
n+h =

n∑
i=1

βi

∞∑
j=0

ψjεi−j =

∞∑
j=0

cjεn−j ,

say, i.e., Xn
n+h has a linear representation starting at εn. The prediction mean square error,

E
[(
Xn+h −Xn

n+h

)2]
= E


 ∞∑

j=0

ψjεn+h−j −
∞∑
j=0

cjεn−j

2
 = σ2


h−1∑
j=0

ψ2
j +

∞∑
j=h

(ψj − cj−h)
2


is minimised by taking cj = ψj+h, for j = 0, 1, . . ., and the prediction is then

Xn
n+h =

∞∑
j=0

cjεn−j =

∞∑
j=0

ψj+hεn−j =

∞∑
j=h

ψjεn+h−j .

Since Xn+h =
∑∞

j=0 ψjεn+h−j , we see that Xn+h −Xn
n+h =

∑h−1
j=0 ψjεn+h−j , and the mean square error is

Pn
n+h = E

{(
Xn+h −Xn

n+h

)2}
= σ2

h−1∑
j=0

ψ2
j .

3


