
Time Series Exercise Sheet 4

Sofia Olhede

March 13, 2025

Exercise 4.1
Determine the sample autocovariances for the Wolfer sunspot numbers posted on Moodle for lags 0, 1, 2, 3.
Determine the Yule-Walker estimators of φ1, φ2 and σ2 in the model

Yt = φ1Yt−1 + φ2Yt−2 + εt

where Yt is the mean corrected series, and εt is assumed to be mean-zero white noise.

Solution 4.1
We compute the autocovariances with the acf function in R (you will need to set the working directory to the
directory of the data to run this):

sunspot <- read.table("sunspot.txt", header = TRUE)
acvs_sunspot <- acf(x=sunspot$sunspot, type = "covariance", plot = FALSE)
cat("the ACVs from lags zero to three is: ", acvs_sunspot$acf[1:4], "\n")

Running this will output:
the ACVs from lags zero to three is: 1382.185 1114.378 591.7208 96.21545

So we obtain: γ̂(0) = 1382.18510, γ̂1 = 1114.37835, γ̂2 = 591.72080, and γ̂3 = 96.21545.

Using the estimator
φ̂ = Γ̂−1γ̂

where the matrix Γ̂ =

(
γ̂0 γ̂1
γ̂1 γ̂0

)
, and γ̂ = (γ̂1, γ̂2) we have

[
φ̂1

φ̂2

]
=

[
1382.2 1114.4
1114.4 1382.2

]−1 [
1114.4
591.72

]
≈
[
1.3175
−0.6341

]
Additionally,

σ̂2
ε = γ̂0 − φ̂1γ̂1 − φ̂2γ̂2 = 289.2139.

Exercise 4.2
Let {Yt} be a mean-zero stationary process with autocovariance γ. Show that the values φ1, . . . , φk which
minimise

E
[
(Yt − φ1Yt−1 − · · · − φkYt−k)

2
]

satisfy the Yule-Walker equations
γj = φ1γj−1 + · · ·+ φkγj−k

for j = 1, . . . , k.

1

Solution 4.2
Expanding terms, we compute:

E

(Yt −
k∑

i=1

φiYt−i

)2
 = Var

(
Yt −

k∑
i=1

φiYt−i

)
+ E

[
Yt −

k∑
i=1

φiYt−i

]2

= Var

(
Yt −

k∑
i=1

φiYt−i

)
+

(
1−

k∑
i=1

φi

)2

E [Yt]
2

(Yt stationary)

= Var

(
Yt −

k∑
i=1

φiYt−i

)
(Yt mean-zero)

= Cov

Yt −
k∑

i=1

φiYt−i, Yt −
k∑

j=1

φjYt−j


= Cov (Yt, Yt)− 2

k∑
i=1

φi Cov (Yt, Yt−i) +
k∑

i=1

k∑
j=1

φiφj Cov (Yt−i, Yt−j)

= γ0 − 2

k∑
i=1

φiγi +

k∑
i=1

k∑
j=1

φiφjγj−i. (Yt stationary)

Summing up we end up with:

E

(Yt −
k∑

i=1

φiYt−i

)2
 = γ0 − 2

k∑
i=1

φiγi +

k∑
i=1

k∑
j=1

φiφjγi−j .

Being a positive quadratic equation, we can only find the minimum. Hence, differentiating with respect to the
ith index and equating to zero we obtain:

−2γi + 2

k∑
j=1

φjγi−j=0.

Rearranging

γi =

k∑
j=1

φjγi−j .

Exercise 4.3
We assume that we have observations from a mean-zero MA(1). We observe X1 = 0, X2 = 1 and X3 = 0.5.
Estimate θ.

Solution 4.3
We recall for the MA(1) process: Xt = εt − θ1εt−1. We are given X1, X2, X3. We choose t = 0 as the starting
point in time.

We want the minimise the squared error terms; yet, the ε terms are unknown. Thus we try to recover them via
εt = Xt + θ1εt−1 as follows.

Write ε0 = 0 (t = 0 is the starting point), ε1 = X1+θ1ε0 = 0, ε2 = X2+θ1ε1 = 1, and finally, ε3 = X3+θ1ε2 =
0.5 + θ1.

The least squares consist of minimising

2

3∑
t=1

ε2t = 0 + 1 + (0.5 + θ1)
2,

which clearly achieves the minimum for θ = −0.5, hence θ̂ = −0.5.

Exercise 4.4
From a series of length 100, we have computed that the ACF at lag 1 is 0.8, at lag 2 is 0.5, and at lag 3 is 0.4.
If we assume that an AR(3) model with zero mean is appropriate, obtain estimates of φ1 and φ2 and φ3?

Solution 4.4
Using Yule-Walker, we have that for γ = (γ1, γ2, γ3)

>, and φ = (φ1, φ2, φ3)
> and

Γ =

γ0 γ1 γ2
γ1 γ0 γ1
γ2 γ1 γ0

 ,

we may write the solution as φ̂ = Γ̂−1γ̂.

As we are given the correlations, we take a new 3× 3 diagonal matrix with the quotient of the variance, 1/γ0,
on the diagonal, say V . Let Γ̄ = V Γ, ρ = V γ, and note that similar to the previous matrices, such matrices
are filled with the autocorrelation ρ instead of the autocovariance.

Then we can rewrite γ = Γφ as V γ = V Γφ, from which we see

φ = (V Γ)−1V γ = Γ̄−1ρ.

Finally, we can estimate φ̂ = ˆ̄Γ−1ρ̂.

Using the given details we obtain

φ̂ = (1.30909,−0.954545, 0.509091)>.

Exercise 4.5
Consider the Wolfer sunspot data. Compute the forwards least squares estimator for an AR(2) model. Do the
same for the backwards estimator. Remember you need to remove the mean if it is significantly non-zero.
Hint: do not do this by hand!

Solution 4.5
The following R code computes both estimators:

sunspot <- read.table("sunspot.txt", header = TRUE)

foward_ls_estimator <- function(x, p) {
x <- x-mean(x)
n <- length(x)
Xf <- x[-1:-p]
compute_x_col <- function(j) {

x[(p + 1 - j):(n - j)]
}
F <- cbind(apply(array(1:p), MARGIN=1, FUN = compute_x_col))
phi_F <- solve(t(F) %*% F) %*% t(F) %*% Xf
sigma_F_squared <- sum((Xf - F %*% phi_F)^2) / (n - p - p)
return(list(phi_F = phi_F, sigma_F_squared = sigma_F_squared))

}
print(foward_ls_estimator(sunspot$sunspot, 2))

backward_ls_estimator <- function(x, p) {
x <- x-mean(x)
n <- length(x)
Xb <- x[1:(n-p)]

3

compute_x_col <- function(j) {
x[(1 + j):(n - p + j)]

}
B <- cbind(apply(array(1:p), MARGIN=1, FUN = compute_x_col))
phi_B <- solve(t(B) %*% B) %*% t(B) %*% Xb
sigma_B_squared <- sum((Xb - B %*% phi_B)^2) / (n - p - p)
return(list(phi_B = phi_B, sigma_B_squared = sigma_B_squared))

}
print(backward_ls_estimator(sunspot$sunspot, 2))

Running this outputs:
$phi_F

[,1]
[1,] 1.4045705
[2,] -0.7113314

$sigma_F_squared
[1] 232.2614

$phi_B
[,1]

[1,] 1.4061489
[2,] -0.7075649

$sigma_B_squared
[1] 231.0316

So we have

φF ≈ [1.4046,−0.7113]>,

σF ≈ 232.2614,

φB ≈ [1.4061,−0.7076]>,

σB ≈ 231.0316.

4

