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Exercise 4.1
Determine the sample autocovariances for the Wolfer sunspot numbers posted on Moodle for lags 0,1, 2, 3.
Determine the Yule-Walker estimators of ¢1,¢2 and o2 in the model

Yi =11 + p2Yio + &

where Y; is the mean corrected series, and ¢; is assumed to be mean-zero white noise.

Solution 4.1

We compute the autocovariances with the acf function in R (you will need to set the working directory to the
directory of the data to run this):

sunspot <- read.table( , header = TRUE)
acvs_sunspot <- acf(x=sunspot$sunspot, type = , plot = FALSE)
cat ( , acvs_sunspot$acf[1:4], )

Running this will output:

the ACVs from lags zero to three is: 1382.185 1114.378 591.7208 96.21545

So we obtain: 4(0) = 1382.18510, 4; = 1114.37835, 45 = 591.72080, and 45 = 96.21545.

Using the estimator

$=I"%

where the matrix I' = (’;0 gl>, and 4 = (%1, 92) we have
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Additionally, A )
62 =40 — d141 — P2 = 289.2139.

Exercise 4.2
Let {Y;} be a mean-zero stationary process with autocovariance v. Show that the values ¢1,..., ¢ which
minimise
E[(i—é1Yiy =+ = 6% r)’]
satisfy the Yule-Walker equations
Vi = 01vi-1+ -+ drYi—k

forj=1,...,k.



Solution 4.2

Expanding terms, we compute:
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Summing up we end up with:
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Being a positive quadratic equation, we can only find the minimum. Hence, differentiating with respect to the
M index and equating to zero we obtain:

k
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Rearranging
k
V=Y $iYiej
j=1

Exercise 4.3

We assume that we have observations from a mean-zero MA(1). We observe X; = 0, X3 = 1 and X3 = 0.5.
Estimate 6.

Solution 4.3
We recall for the MA(1) process: X; = e; — 61e,—1. We are given Xy, Xo, X3. We choose t = 0 as the starting
point in time.

We want the minimise the squared error terms; yet, the £ terms are unknown. Thus we try to recover them via
et = X; + 0164_1 as follows.

Write eg = 0 (¢ = 0 is the starting point), ey = X1 + 6169 =0, e2 = Xo+ 6161 = 1, and finally, e3 = X3+ 6165 =
0.5+ 64.

The least squares consist of minimising



3
D el =041+ (0.5+61)
t=1

which clearly achieves the minimum for 6§ = —0.5, hence 6 =—0.5.

Exercise 4.4

From a series of length 100, we have computed that the ACF at lag 1 is 0.8, at lag 2 is 0.5, and at lag 3 is 0.4.
If we assume that an AR(3) model with zero mean is appropriate, obtain estimates of ¢1 and ¢o and ¢3?

Solution 4.4
Using Yule-Walker, we have that for v = (y1,72,73) ", and ¢ = (¢1, ¢2, ¢3) | and

Yo Y1 72
'=|m1 v m|,
Y2 71 70

we may write the solution as é = f‘_l'?.

As we are given the correlations, we take a new 3 x 3 diagonal matrix with the quotient of the variance, 1/7o,
on the diagonal, say V. Let I' = VI', p = V~, and note that similar to the previous matrices, such matrices
are filled with the autocorrelation p instead of the autocovariance.

Then we can rewrite v = I'¢p as Vv = VI'¢, from which we see
o= VD) 'Vy=T"1p.

Finally, we can estimate ¢ = I'~!5.

Using the given details we obtain

& = (1.30909, —0.954545,0.509091) .

Exercise 4.5

Consider the Wolfer sunspot data. Compute the forwards least squares estimator for an AR(2) model. Do the
same for the backwards estimator. Remember you need to remove the mean if it is significantly non-zero.
Hint: do not do this by hand!

Solution 4.5

The following R code computes both estimators:

sunspot <- read.table( , header = TRUE)

foward_ls_estimator <- function(x, p) {

x <- x-mean(x)

n <- length(x)

Xf <- x[-1:-p]

compute_x_col <- function(j) {

x[(p+1 - 3):(n - j)]

¥

F <- cbind(apply(array(1l:p), MARGIN=1, FUN = compute_x_col))

phi_F <- solve(t(F) %x% F) %x% t(F) %*% Xf

sigma_F_squared <- sum((Xf - F %x*% phi_F)~2) / (n - p - p)

return(list (phi_F = phi_F, sigma_F_squared = sigma_F_squared))
}

print (foward_ls_estimator (sunspot$sunspot, 2))

backward_ls_estimator <- function(x, p) {
X <- x-mean(x)
n <- length(x)
Xb <- x[1:(n-p)]



compute_x_col <- function(j) {
x[(1 + j):(n - p + )]

}

B <- cbind(apply(array(l:p), MARGIN=1, FUN = compute_x_col))

phi_B <- solve(t(B) %x% B) %x*% t(B) %x*% Xb

sigma_B_squared <- sum((Xb - B %x*% phi_B)"2) / (n - p - p)

return(list(phi_B = phi_B, sigma_B_squared = sigma_B_squared))
}

print (backward_ls_estimator (sunspot$sunspot, 2))

Running this outputs:

$phi_F

[,1]
[1,] 1.4045705
[2,] -0.7113314

$sigma_F_squared
[1] 232.2614

$phi_B

[,1]
[1,] 1.4061489
[2,] -0.7075649

$sigma_B_squared
[1] 231.0316

So we have

br ~ [1.4046,—-0.7113] ",
op & 232.2614,
$p ~ [1.4061, —0.7076] T,
op ~ 231.0316.



