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Exercise 3.1
Find the coefficients ψj j = 0, 1, 2, 3... in the representation of

Xt =

∞∑
j=0

ψjεt−j ,

of the ARMA process
(1− 0.5B + 0.04B2)Xt = (1 + 0.25B)εt

when εt is white noise.

Solution 3.1
We have

Xt =
1 + 0.25B

1− 0.5B + 0.04B2
εt

=
1 + 0.25B

0.04(B− 2.5)(B− 10)
εt

=
1 + 0.25B

0.04× 7.5

(
−1

B− 2.5
+

1

B− 10

)
εt

=
1 + 0.25B

0.3

 1

2.5

∞∑
j=0

0.4jBj − 1

10

∞∑
j=0

0.1jBj

 εt

=

∞∑
j=0

{(
0.4j

0.75
− 0.1j

3

)
Bj +

(
0.4j

3
− 0.1j

12

)
Bj+1

}
εj

=

∞∑
j=0

(
0.4j

0.75
− 0.1j

3

)
εt−j +

∞∑
l=1

(
0.4l

1.2
− 0.1l

1.2

)
εt−l

= εt +

∞∑
j=1

(
0.4j

0.75
− 0.1j

3
+

0.4j

1.2
− 0.1j

1.2

)
εt−j

=

∞∑
j=0

ψjεt−j ,

where

ψj =

{
1 if j = 0
13
6 0.4j − 7

60.1
j if j = 1, 2, . . .

Exercise 3.2
Assume that Yt is a causal and invertible ARMA process ϕ(B)Yt = θ(B)ϵt define ϕ̃(B) = ϕ(B)θ−1(B) and take
a(B) = (ϕ̃(B))−1 =

∑∞
j=0 ajB

j . Determine the representation of Yt in terms of ϵt, firstly when Yt is a stationary
AR(1) and secondly when Yt is a stationary AR(2).
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Solution 3.2
We start with the AR(1) model (1− ϕB)Yt = ϵt. By causality, we may express Yt as

Yt =
1

1− ϕB
ϵt =

∞∑
k=0

ϕkϵt−k.

The AR(2) is slightly more complicated. Again we write (1 − ϕ1B − ϕ2B
2)Yt = ϵt, where by stationarity and

causality the roots of the polynomial Φ(z) = 1 − ϕ1z − ϕ2z
2 lie outside of the unit circle, that is |z| > 1. We

denote the two roots by g−1
1 and g−1

2 . We may then express the polynomial as Φ(z) = (1− g1z)(1− g2z).

Then it follows that

Yt =
1

(1− g1B)(1− g2B)
ϵt.

Manipulating the double series we see

Yt =

∞∑
k1=0

∞∑
k2=0

gk1
1 gk2

2 Bk1+k2ϵt

=

∞∑
k1=0

∞∑
k2=0

gk1
1 gk2

2 ϵt−(k1+k2)

=

∞∑
n=0

n∑
k=0

gk1g
n−k
2 ϵt−n (n = k1 + k2)

=

∞∑
n=0

ϵt−n

n∑
k=0

gk1g
n−k
2 .

In the third line above we use the fact that both |g1|, |g2| < 1, and hence we can apply the Cauchy Product
formula for Series.

As a sum of a geometric series see that for g1 ̸= g2

n∑
k=0

gk1g
n−k
2 = gn1

1− gn+1
2

gn+1
1

1− g2
g1

=
gn+1
1 − gn+1

2

g1 − g2
.

And thus we can write

Yt =
g1

g1 − g2

∞∑
n=0

gn1 ϵt−n − g2
g1 − g2

∞∑
n=0

gn2 ϵt−n.

One can then substitute g−1
1 =

−ϕ1−
√

ϕ2
1+4ϕ2

2ϕ2
, g−1

2 =
−ϕ1+

√
ϕ2
1+4ϕ2

2ϕ2
.

The case g1 = g2 then clearly
∑n

k=0 g
k
1g

n−k
2 = (n+ 1)gn1 .

Exercise 3.3
Assume we study an AR(2) process given by (where ϵι is a Gaussian process):

15

16
Yt =

1

4
Yt−1 −

1

16
Yt−2 + ϵt, t = 0, 1, 2, 3 . . .

Write down the characteristic AR polynomial associated with this process. Is this a stationary process? Is it
invertible?

2



Solution 3.3
Rewriting our AR(2) process in terms of the backshift operator YtΦ(B) = ϵt we get:

Yt(
15

16
− 1

4
B +

1

16
B2) = ϵt. (1)

We know that for the AR process to be stationary the roots of the characteristic polynomial Φ(z) must lie outside
of the unit circle. We find out that the roots of the characteristic polynomial given in (1) are 2+3.3166247903554i
and 2−3.3166247903554i, respectively, which both lie outside the unit circle and hence our process is stationary.
An AR process is always invertible.

Exercise 3.4
Assume we study the ARMA(2, 1) process generated according to

Yt −
1

4
Yt−1 +

1

16
Yt−2 = ϵt − 0.5ϵt−1, t = 0, 1, 2, 3 . . .

Is this a stationary process? Is it invertible?

Solution 3.4
The ARMA(2, 1) process is defined as Yt − 1

4Yt−1 + 1
16Yt−2 = ϵt − 0.5ϵt−1 for t ∈ N. This can be written

in terms of the backshift operator as Yt
(
1− 1

4B+ 1
16B

2
)
= ϵt (1− 0.5B), giving characteristic polynomials

Φ(z) = z2 − 4z + 16 and Ω(z) = 1− 1
2z for which we get respectively roots z = 2± 2

√
3i and z = 2 which are

both outside the unit circle. Thus the process is stationary and invertible.

Exercise 3.5
Let {Ut} be a stationary zero-mean time series. Define

Xt = (1− 0.4B)Ut

and
Wt = (1− 2.5B)Ut.

(a) Express the autocorrelation functions of {Xt} and {Wt} in terms of that for {Ut}.

(b) Show that {Xt} and {Wt} have the same autocorrelation functions.

(c) Show that the process εt = −
∑∞

j=1 (0.4)
j
Xt+j satisfies the difference equations

εt − 2.5εt−1 = Xt.

Solution 3.5
1. We have Xt = Ut − 0.4Ut−1. Then for all t, τ ∈ T the autocovariance function is

γX(τ) = Cov (Ut − 0.4Ut−1, Ut+τ − 0.4Ut+τ−1) = 1.16γU (τ)− 0.4γU (τ − 1)− 0.4γU (τ + 1)

so the corresponding autocorrelation function is

ρX(τ) =
γX(τ)

γX(0)
=

1

γX(0)
{1.16γU (τ)− 0.4γU (τ − 1)− 0.4γU (τ + 1)}

Remember that γU (τ) = ρU (τ)γU (0), so

ρX(τ) =
γU (0)

γX(0)
{1.16ρU (τ)− 0.4ρU (τ − 1)− 0.4ρU (τ + 1)}

Using the fact that the autocovariance function is symmetric, we have γU (−1) = γU (1), so

γX(0) = 1.16γU (0)− 0.8γU (1) = γU (0)

{
1.16− 0.8

γU (1)

γU (0)

}
= γU (0) {1.16− 0.8ρU (1)}
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thus
γU (0)

γX(0)
=

1

1.16− 0.8ρU (1)

Finally

ρX(τ) =
1

1.16− 0.8ρU (1)
{1.16ρU (τ)− 0.4ρU (τ − 1)− 0.4ρU (τ + 1)} .

Similarly, we obtain

ρW (τ) =
1

7.25− 5ρU (1)
{7.25ρU (τ)− 2.5ρU (τ − 1)− 2.5ρU (τ + 1)}

2. We note that

ρW (τ) =
6.25

6.25 {1.16− 0.8ρU (1)}
{1.16ρU (τ)− 0.4ρU (τ − 1)− 0.4ρU (τ + 1)} = ρX(τ)

3. Direct calculation shows that if εt = −
∑∞

j=1 0.4
jXt+j then

εt − 2.5εt−1 = −
∞∑
j=1

0.4jXt+j + 2.5

∞∑
j=1

0.4jXt+j−1

= −
∞∑
j=1

0.4jXt+j + 2.5

∞∑
l=0

0.4l+1Xt+l

= −
∞∑
j=1

0.4jXt+j +Xt +

∞∑
l=1

0.4lXt+l

= Xt
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