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Exercise 3.1
Find the coefficients ©; j = 0, 1,2, 3... in the representation of

o0
X = E Vigr—j,
i=0

of the ARMA process
(1 —0.5B 4 0.04B%)X; = (1 + 0.25B)¢;

when ¢, is white noise.

Solution 3.1
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Exercise 3.2

Assume that Y; is a causal and invertible ARMA process ¢(B)Y; = 0(B)e; define #(B) = ¢(B)6~1(B) and take

oo

a(B) = (¢(B))~ = >0 a;B7. Determine the representation of Y; in terms of €, firstly when Y; is a stationary

AR(1) and secondly when Y; is a stationary AR(2).



Solution 3.2
We start with the AR(1) model (1 — ¢B)Y; = €;. By causality, we may express Y; as

1 = 5
Y, = m& = kz_()¢ €t—k-

The AR(2) is slightly more complicated. Again we write (1 — ¢1B — ¢2B?)Y; = ¢, where by stationarity and
causality the roots of the polynomial ®(z) = 1 — ¢12 — ¢92? lie outside of the unit circle, that is |z| > 1. We
denote the two roots by g; ' and g5 '. We may then express the polynomial as ®(2) = (1 — g12)(1 — go2).

Then it follows that 1
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Manipulating the double series we see
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In the third line above we use the fact that both |g1], |g2] < 1, and hence we can apply the Cauchy Product
formula for Series.

As a sum of a geometric series see that for g1 # go
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And thus we can write
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One can then substitute g; ' =
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The case g1 = go then clearly > _ gtgs ™" = (n+ 1)g7.

Exercise 3.3
Assume we study an AR(2) process given by (where ¢, is a Gaussian process):

15 1 1
—Y,=-Y, 1 ——=Y_ t=0,1,2,3...
67t = g1 16t2+5t7 R
Write down the characteristic AR polynomial associated with this process. Is this a stationary process? Is it
invertible?



Solution 3.3
Rewriting our AR(2) process in terms of the backshift operator Y;®(B) = ¢; we get:

15 1 1

We know that for the AR process to be stationary the roots of the characteristic polynomial ®(z) must lie outside
of the unit circle. We find out that the roots of the characteristic polynomial given in (1) are 2+3.31662479035544
and 2 —3.3166247903554¢, respectively, which both lie outside the unit circle and hence our process is stationary.
An AR process is always invertible.

Exercise 3.4
Assume we study the ARMA(2, 1) process generated according to

1

16)@72:675_0{)675717 t=0,1,2,3...

1
}/{5—an1+

Is this a stationary process? Is it invertible?

Solution 3.4

The ARMA(2,1) process is defined as Y; — iY}—1 + l—lﬁYt_g = ¢ — 0.5¢,_1 for t € N. This can be written

in terms of the backshift operator as Y; (1 - %B + %BQ) = ¢ (1 —0.5B), giving characteristic polynomials
®(z) = 2% — 4z + 16 and Q(z) = 1 — }2 for which we get respectively roots z = 2 = 2v/3i and z = 2 which are
both outside the unit circle. Thus the process is stationary and invertible.

Exercise 3.5
Let {U;} be a stationary zero-mean time series. Define

X; = (1-04B)U;

and
Wi = (1 - 2.5B)U;.

(a) Express the autocorrelation functions of {X;} and {W;} in terms of that for {U;}.
(b) Show that {X;} and {W;} have the same autocorrelation functions.

(c) Show that the process ey = — Z;’;l (0.4)7 X4 satisfies the difference equations
Et — 2.5875,1 = Xt-
Solution 3.5
1. We have X; = U; — 0.4U;_1. Then for all ¢,7 € T the autocovariance function is
’}/X(T) = Cov (Ut - ().4[/vt_17 Ut+7' - O.4Ut+7—_1) = 116’}/[](7') - 04’}/[](7' - 1) - 04’}/U(T + 1)
so the corresponding autocorrelation function is

Cox(m) 1
px (1) = 7% (0) ~ 9% (0) {1167y (1) = 0.4y (7 — 1) = 0.4y (7 + 1)}

Remember that vy (7) = pu (7)yv(0), so

7 (0)
7x (0)

Using the fact that the autocovariance function is symmetric, we have vy (—1) = (1), so

px (1) = {1.16py (1) — 0.4py (T — 1) — 0.4py (T + 1)}

vx(0) = 1.167(0) — 0.8y (1) = v (0) {1.16 - 0.8152(1); } = 40 (0) {1.16 — 0.8py (1)}



thus
YU (0> 1

vx(0) ~ 1.16 — 0.8py (1)

Finally
1

Px(T) = 135 080 M)

Similarly, we obtain

{1.16py (1) = 0.4py (T — 1) — 0.4py (T + 1)} .

pw(T) = m {7.25pu (1) — 2.5pu (T — 1) — 2.5py (T + 1)}

2. We note that
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3. Direct calculation shows that if e, = — 377 0.47 X} then
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