

Time Series Exercise Sheet 2

Sofia Olhede

February 27, 2025

Exercise 2.1

When we defined the MA(q) process we specified $\theta_0 = -1$. In terms of the covariance structure for moving average processes, why do we not gain more generality by letting θ_0 be an arbitrary number?

Solution 2.1

If we change the first coefficient, then we can divide through the specifying equation by that number and obtain a new process with the same autocorrelation. So for identifiability purpose, we force the coefficient to be $\theta_0 \equiv -1$.

For example, let's consider the first order moving average process, MA(1), when $\mu = 0$. In other words, the process is determined by $\theta_0 = -1$ and θ_1 :

$$X_t = -\theta_0 \epsilon_t - \theta_1 \epsilon_{t-1} = \epsilon_t - \theta_1 \epsilon_{t-1}. \quad (1)$$

where $\epsilon_t \sim N(0, \sigma_\epsilon^2)$. Assuming there is another parametrization for the process using $\theta'_0 = c\theta_0 = c$ and θ'_1 for some $c \neq 0$.

$$X_t = -\theta'_0 \epsilon'_t - \theta'_1 \epsilon'_{t-1} = c\epsilon'_t - \theta'_1 \epsilon'_{t-1}. \quad (2)$$

where $\epsilon'_t \sim N(0, \sigma'_{\epsilon'}^2)$. If we rewrite (1) as

$$\begin{aligned} X_t &= \epsilon_t - \theta_1 \epsilon_{t-1} \\ &= c \frac{\epsilon_t}{c} - (c\theta_1) \frac{\epsilon_{t-1}}{c}. \end{aligned}$$

Hence, $\theta'_1 = c\theta_1$ and $\epsilon'_t = c^{-1}\epsilon_t$ for all t . Moreover, $\sigma'_{\epsilon'}^2 = c^{-2}\sigma_\epsilon^2$. Note that the two representations have the same autocovariance (and autocorrelation):

$$\begin{aligned} \text{Var}(X_t) &= (1 + \theta_1^2)\sigma_\epsilon^2 && \text{from (1)} \\ \text{Var}(X_t) &= \{(\theta'_0)^2 + (\theta'_1)^2\}\sigma'_{\epsilon'}^2 \\ &= c^2(1 + \theta_1^2)c^{-2}\sigma_\epsilon^2 = (1 + \theta_1^2)\sigma_\epsilon^2 && \text{from (2)} \\ \text{Cov}(X_t, X_{t-1}) &= \theta_0\theta_1\sigma_\epsilon^2 \end{aligned}$$

This shows us that there is an identifiability issue if we do not constrain $\theta_0 = -1$. Specifically, there are multiple MA(1) representations for X_t , making the representation of X_t non-unique.

Using the same argument to the general MA(q) process, we will reach the same conclusion as the MA(1) example.

Exercise 2.2

Determine that the moving average process defined by

$$X_t = \varepsilon_t - \theta \varepsilon_{t-1}$$

can be written as

$$X_t = \varepsilon_t - \sum_{j=1}^p \theta^j X_{t-j} - \theta^{p+1} \varepsilon_{t-p-1}$$

for any positive integer value of p .

Solution 2.2

Note that for any integer value of $p \geq 1$, we have $X_{t-p} = \varepsilon_{t-p} - \theta\varepsilon_{t-p-1}$, so

$$\varepsilon_{t-p} = X_{t-p} + \theta\varepsilon_{t-p-1}$$

Applying the latter recursively we have

$$\begin{aligned} X_t &= \varepsilon_t - \theta\varepsilon_{t-1} = \varepsilon_t - \theta(X_{t-1} + \theta\varepsilon_{t-2}) = \varepsilon_t - \theta X_{t-1} - \theta^2\varepsilon_{t-2} \\ &= \varepsilon_t - \theta X_{t-1} - \theta^2(X_{t-2} + \theta\varepsilon_{t-3}) \\ &= \varepsilon_t - \theta X_{t-1} - \theta^2 X_{t-2} - \theta^3\varepsilon_{t-3} \\ &= \dots \\ &= \varepsilon_t - \sum_{j=1}^p \theta^j X_{t-j} - \theta^{p+1}\varepsilon_{t-p-1} \end{aligned}$$

Exercise 2.3

Assume that $Y_t = \sum_{s=-p}^p g_{s-t}\epsilon_s$ and $Z_t = \sum_{s=-p}^p h_{s-t}\epsilon_s$ where ϵ_t is zero-mean white noise. We define X_t pointwise by $Y_t + Z_t$. Determine the first and second moments of X_t .

Solution 2.3

Let $\text{Var}(\epsilon_s) = \sigma^2$ and rewrite $X_t = \sum_{s=-p}^p (g_{s-t} + h_{s-t})\epsilon_s$. As ϵ_s are uncorrelated, we have for all $t, \tau \in T$

$$\begin{aligned} \mathbb{E}[X_t] &= \sum_{s=-p}^p (g_{s-t} + h_{s-t}) \mathbb{E}(\epsilon_s) = \sum_{s=-p}^p (g_{s-t} + h_{s-t}) \cdot 0 = 0 \\ \mathbb{E}[X_t X_{t+\tau}] &= \text{Cov}(X_t, X_{t+\tau}) = \text{Cov}\left(\sum_{s=-p}^p (g_{s-t} + h_{s-t})\epsilon_s, \sum_{l=-p}^p (g_{l-t-\tau} + h_{l-t-\tau})\epsilon_l\right) \\ &= \sum_{s=-p}^p \sum_{l=-p}^p (g_{s-t} + h_{s-t})(g_{l-t-\tau} + h_{l-t-\tau}) \text{Cov}(\epsilon_s, \epsilon_l) \\ &= \sigma^2 \sum_{s=-p}^p (g_{s-t} + h_{s-t})(g_{s-t-\tau} + h_{s-t-\tau}) \end{aligned}$$

Exercise 2.4

In the lectures we defined two different estimators for the ACVS:

$$\begin{aligned} \tilde{\gamma}_\tau &= \frac{1}{n - |\tau|} \sum_{t=1}^{n-|\tau|} \{X_t - \bar{X}\} \{X_{t+|\tau|} - \bar{X}\}, \\ \hat{\gamma}_\tau &= \frac{1}{n} \sum_{t=1}^{n-|\tau|} \{X_t - \bar{X}\} \{X_{t+|\tau|} - \bar{X}\}. \end{aligned}$$

If X_t has independent Gaussian realizations at each time point please calculate the mean, variance and mean-square error of these estimators. Repeat the calculation for an MA(1) process. As in class to do the analysis replace \bar{X} by $\mu = \mathbb{E}(X_t)$, arguing that for large samples this will be appropriate.

(Hint): There is a known result (Isserlis' theorem) that if $\mathbf{X} = (X_1, X_2, X_3, X_4)$ is a multivariate normal random vector, then:

$$\mathbb{E}[X_1 X_2 X_3 X_4] = \mathbb{E}[X_1 X_2] \mathbb{E}[X_3 X_4] + \mathbb{E}[X_1 X_3] \mathbb{E}[X_2 X_4] + \mathbb{E}[X_1 X_4] \mathbb{E}[X_2 X_3].$$

Solution 2.4

For a white noise process we have (informally replacing \bar{X} with μ like in class)

$$\begin{aligned}\mathbb{E}[\hat{\gamma}_\tau] &= \frac{1}{n} \sum_{t=1}^{n-|\tau|} \mathbb{E}[(X_t - \mu)(X_{t+|\tau|} - \mu)] \\ &= \begin{cases} \sigma_X^2 & \text{if } \tau = 0 \\ 0 & \text{otherwise.} \end{cases} \quad \mathbb{E}[\tilde{\gamma}_\tau] \\ &= \begin{cases} \sigma_X^2 & \text{if } \tau = 0 \\ 0 & \text{otherwise.} \end{cases}\end{aligned}$$

Furthermore,

$$\begin{aligned}\text{Var}(\hat{\gamma}_\tau) &= \frac{1}{n^2} \sum_{t_1=1}^{n-|\tau|} \sum_{t_2=1}^{n-|\tau|} \text{Cov}((X_{t_1} - \mu)(X_{t_1+|\tau|} - \mu), (X_{t_2} - \mu)(X_{t_2+|\tau|} - \mu)) \\ &= \frac{1}{n^2} \sum_{t_1=1}^{n-|\tau|} \sum_{t_2=1}^{n-|\tau|} \{ \mathbb{E}[(X_{t_1} - \mu)(X_{t_1+|\tau|} - \mu)(X_{t_2} - \mu)(X_{t_2+|\tau|} - \mu)] \\ &\quad - \mathbb{E}[(X_{t_1} - \mu)(X_{t_1+|\tau|} - \mu)] \mathbb{E}[(X_{t_2} - \mu)(X_{t_2+|\tau|} - \mu)] \}\end{aligned}$$

Using Isserlis' theorem, we find

$$\begin{aligned}\mathbb{E}[(X_{t_1} - \mu)(X_{t_1+|\tau|} - \mu)(X_{t_2} - \mu)(X_{t_2+|\tau|} - \mu)] \\ = \gamma_X(|\tau|)\gamma_X(|\tau|) + \gamma_X(t_1 - t_2)\gamma_X(t_1 - t_2) + \gamma_X(t_1 - t_2 - |\tau|)\gamma_X(t_1 - t_2 + |\tau|)\end{aligned}$$

For white noise we have $\gamma_X(\tau) = \sigma_X^2 \delta_\tau$ where

$$\delta_\tau = \begin{cases} 1 & \tau = 0, \\ 0 & \text{otherwise.} \end{cases}$$

Thus we get

$$\text{Cov}((X_{t_1} - \mu)(X_{t_1+|\tau|} - \mu), (X_{t_2} - \mu)(X_{t_2+|\tau|} - \mu)) = \sigma_X^4 \delta_{t_1-t_2} + \sigma_X^4 \delta_{t_1-t_2} \delta_\tau.$$

We therefore find that

$$\text{Var}(\hat{\gamma}_\tau) = \frac{1 + \delta_\tau}{n^2} \sigma_X^4 (n - |\tau|).$$

It follows directly that

$$\text{Var}(\tilde{\gamma}_\tau) = \frac{1 + \delta_\tau}{n - |\tau|} \sigma_X^4.$$

The mean square error is then (for white noise)

$$\text{MSE}(\hat{\gamma}_\tau) = (0)^2 + \frac{n - |\tau|}{n^2} (1 + \delta_\tau) \sigma_X^4,$$

whilst

$$\text{MSE}(\tilde{\gamma}_\tau) = (0)^2 + \frac{1}{n - |\tau|} (1 + \delta_\tau) \sigma_X^4.$$

Thus in this case the biased estimator $\hat{\gamma}$ wins out.

For the MA(1) process, $\text{Cov}(X_t, X_{t+|\tau|}) = \delta_\tau (1 + \theta^2) \sigma_X^2 - \delta_{|\tau|-1} \theta \sigma_X^2$ and this goes into the calculations.

Exercise 2.5

Assume we know the mean of X_t and it is μ . Form the estimator

$$\tilde{\gamma}_\tau^{(\alpha)} = \alpha \hat{\gamma}_\tau + (1 - \alpha) \tilde{\gamma}_\tau$$

For X_t Gaussian white noise determine the MSE of $\tilde{\gamma}_\tau^{(\alpha)}$. For $\sigma_X^2 = 1$, $\tau = 1$ and $n = 10$ plot it as a function of α . What value of α is appropriate?

Solution 2.5

Wlog we may assume that $\mu = 0$, else we may define a new process, say $X_t^* = X_t - \mu$, s.t. $\gamma_{X^*} = \gamma_X$. For a white noise process, we note that both $\tilde{\gamma}$ and $\hat{\gamma}$ are unbiased, and hence $\bar{\gamma}^{(u)}$ is also unbiased, i.e. $\mathbb{E}[\bar{\gamma}_\tau^{(\alpha)}] = \gamma(\tau)$; see Exercise 2.4. Thus, for a white noise process, we may re-write the $\text{MSE}(\bar{\gamma}_\tau^{(\alpha)})$ as:

$$\begin{aligned}\text{MSE}(\bar{\gamma}_\tau^{(\alpha)}) &= \mathbb{E}[(\bar{\gamma}_\tau^{(\alpha)} - \gamma(\tau))^2] = \mathbb{E}[(\bar{\gamma}_\tau^{(\alpha)} - \mathbb{E}[\bar{\gamma}_\tau^{(\alpha)}])^2] = \text{Cov}(\bar{\gamma}_\tau^{(\alpha)}, \bar{\gamma}_\tau^{(\alpha)}) \\ &= \text{Cov}(\alpha\tilde{\gamma}_\tau + (1 - \alpha)\hat{\gamma}_\tau, \alpha\tilde{\gamma}_\tau + (1 - \alpha)\hat{\gamma}_\tau).\end{aligned}$$

We continue by expanding the terms inside the covariance

$$\text{MSE}(\bar{\gamma}_\tau^{(\alpha)}) = \alpha^2 \text{Cov}(\tilde{\gamma}_\tau, \tilde{\gamma}_\tau) + 2\alpha(1 - \alpha)\text{Cov}(\tilde{\gamma}_\tau, \hat{\gamma}_\tau) + (1 - \alpha)^2 \text{Cov}(\hat{\gamma}_\tau, \hat{\gamma}_\tau). \quad (3)$$

We use the fact that $\hat{\gamma}_\tau = \frac{n - |\tau|}{n}\tilde{\gamma}_\tau$ to compute

$$\begin{aligned}\text{Cov}(\tilde{\gamma}_\tau, \hat{\gamma}_\tau) &= \frac{n - |\tau|}{n} \text{Var}(\tilde{\gamma}_\tau), \\ \text{Var}(\hat{\gamma}_\tau) &= \left\{ \frac{n - |\tau|}{n} \right\}^2 \text{Var}(\tilde{\gamma}_\tau).\end{aligned}$$

For the time being, assume that $\text{Var}(\tilde{\gamma}_\tau) = V(\tau)$, and let $C(\tau) = \frac{n - |\tau|}{n}$. Then we note

$$\text{MSE}(\bar{\gamma}_\tau^{(\alpha)}) = (\alpha - \alpha C(\tau) + C(\tau))^2 V(\tau).$$

A good choice of α can be computed by minimizing $\text{MSE}(\bar{\gamma}_\tau^{(\alpha)})$. Since $V(\tau)$ is not dependent on α for a given τ , we simply minimize $(\alpha - \alpha C(\tau) + C(\tau))^2$. We have for $\tau > 0$ that $C(\tau) < 1$ hence the expression in brackets is always positive for $|\tau| < n$. Differentiation wrt. α yields

$$(\alpha - \alpha C(\tau) + C(\tau))(1 - C(\tau)) \stackrel{!}{=} 0,$$

from where, for $\tau > 0$, we can pick $\alpha = C(\tau)/(C(\tau) - 1)$. For $\tau = 0$ any choice of α leaves the MSE unchanged.

We demonstrate this for the case when X_t is a Gaussian white noise. From Exercise 2.4, we already know $\text{Var}(\tilde{\gamma}_\tau) = \frac{1 + \delta_\tau}{n - |\tau|} \sigma_X^4$. Finally, for $\tau > 0$, replacing $n = 10$, $\sigma_X = 1$ we obtain

$$\text{MSE}(\bar{\gamma}_\tau^{(\alpha)}) = \left\{ \alpha - \alpha \frac{n - |\tau|}{n} + \frac{n - |\tau|}{n} \right\}^2 \frac{1}{n - |\tau|} \quad (4)$$

In Figure 1 we plot the MSE for $\tau = 1$ as a function of α .

Exercise 2.6

Show that for any series $\{x_1, \dots, x_n\}$ the sample autocovariance satisfies $\sum_{|\tau| < n} \hat{\gamma}_\tau = 0$.

Solution 2.6

Let $\bar{X} = (\sum_{t=1}^n X_t)/n$. We compute:

$$\begin{aligned}\sum_{\tau=-n+1}^{n-1} \hat{\gamma}_\tau &= \frac{1}{n} \sum_{\tau=-n+1}^{n-1} \sum_{t=1}^{n-|\tau|} (X_t - \bar{X})(X_{t+|\tau|} - \bar{X}) \\ &= \frac{1}{n} \sum_{t_1=1}^n \sum_{t_2=1}^n (X_{t_1} - \bar{X})(X_{t_2} - \bar{X}) \\ &= \frac{1}{n} \left(\sum_{t=1}^n (X_t - \bar{X}) \right)^2 \\ &= 0.\end{aligned}$$

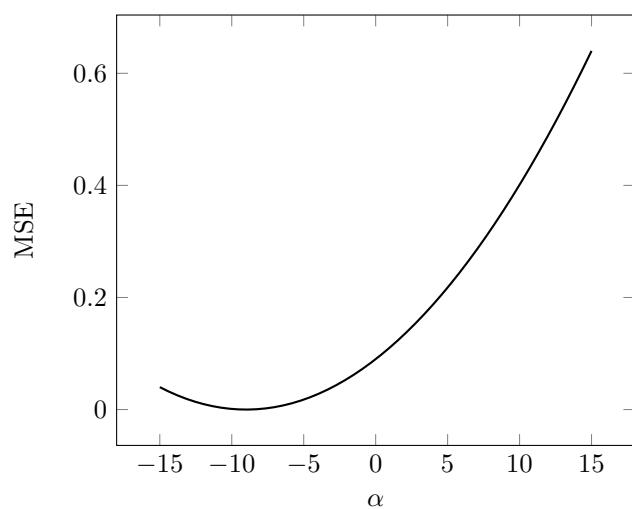


Figure 1: MSE of the autocovariance estimate for different values of α .