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Exercise 2.1
When we defined the MA(q) process we specified θ0 = −1. In terms of the covariance structure for moving
average processes, why do we not gain more generality by letting θ0 be an arbitrary number?

Solution 2.1
If we change the first coefficient, then we can divide through the specifying equation by that number and obtain a
new process with the same autocorrelation. So for identifiability purpose, we force the coefficient to be θ0 ≡ −1.

For example, let’s consider the first order moving average process, MA(1), when µ = 0. In other words, the
process is determined by θ0 = −1 and θ1:

Xt = −θ0ϵt − θ1ϵt−1 = ϵt − θ1ϵt−1. (1)

where ϵt ∼ N(0, σ2
ϵ ). Assuming there is another parametrization for the process using θ′0 = cθ0 = c and θ′1 for

some c ̸= 0.
Xt = −θ′0ϵ

′
t − θ′1ϵ

′
t−1 = cϵ′t − θ′1ϵ

′
t−1. (2)

where ϵ′t ∼ N(0, σ2
ϵ′). If we rewrite (1) as

Xt = ϵt − θ1ϵt−1

= c
ϵt
c
− (cθ1)

ϵt−1

c
.

Hence, θ′1 = cθ1 and ϵ′t = c−1ϵt for all t. Moreover, σ2
ϵ′ = c−2σ2

ϵ . Note that the two representations have the
same autocovariance (and autocorrelation):

Var (Xt) = (1 + θ21)σ
2
ϵ from (1)

Var (Xt) = {(θ′0)2 + (θ′1)
2}σ2

ϵ′

= c2(1 + θ21)c
−2σ2

ϵ = (1 + θ21)σ
2
ϵ from (2)

Cov (Xt, Xt−1) = θ0θ1σ
2
ϵ

This shows us that there is an identifiability issue if we do not constrain θ0 = −1. Specifically, there are multiple
MA(1) representations for Xt, making the representation of Xt non-unique.

Using the same argument to the general MA(q) process, we will reach the same conclusion as the MA(1) example.

Exercise 2.2
Determine that the moving average process defined by

Xt = εt − θεt−1

can be written as

Xt = εt −
p∑

j=1

θjXt−j − θp+1εt−p−1

for any positive integer value of p.
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Solution 2.2
Note that for any integer value of p ⩾ 1, we have Xt−p = εt−p − θεt−p−1, so

εt−p = Xt−p + θεt−p−1

Applying the latter recursively we have

Xt = εt − θεt−1 = εt − θ (Xt−1 + θεt−2) = εt − θXt−1 − θ2εt−2

= εt − θXt−1 − θ2 (Xt−2 + θεt−3)

= εt − θXt−1 − θ2Xt−2 − θ3εt−3

= · · ·

= εt −
p∑

j=1

θjXt−j − θp+1εt−p−1

Exercise 2.3
Assume that Yt =

∑p
s=−p gs−tϵs and Zt =

∑p
s=−p hs−tϵs where ϵt is zero-mean white noise. We define Xt

pointwise by Yt + Zt. Determine the first and second moments of Xt.

Solution 2.3
Let Var (ϵs) = σ2 and rewrite Xt =

∑p
s=−p (gs−t + hs−t) ϵs. As ϵs are uncorrelated, we have for all t, τ ∈ T

E [Xt] =

p∑
s=−p

(gs−t + hs−t) E (ϵs) =

p∑
s=−p

(gs−t + hs−t) · 0 = 0

E [XtXt+τ ] = Cov (Xt, Xt+τ ) = Cov

 p∑
s=−p

(gs−t + hs−t) ϵs,

p∑
l=−p

(gl−t−τ + hl−t−τ ) ϵl


=

p∑
s=−p

p∑
l=−p

(gs−t + hs−t) (gl−t−τ + hl−t−τ ) Cov (ϵs, ϵl)

= σ2

p∑
s=−p

(gs−t + hs−t) (gs−t−τ + hs−t−τ )

Exercise 2.4
In the lectures we defined two different estimators for the ACVS:

γ̃τ =
1

n− |τ |

n−|τ |∑
t=1

{
Xt − X̄

}{
Xt+|τ | − X̄

}
,

γ̂τ =
1

n

n−|τ |∑
t=1

{
Xt − X̄

}{
Xt+|τ | − X̄

}
.

If Xt has independent Gaussian realizations at each time point please calculate the mean, variance and mean-
square error of these estimators. Repeat the calculation for an MA(1) process. As in class to do the analysis
replace X̄ by µ = E(Xt), arguing that for large samples this will be appropriate.

(Hint): There is a known result (Isserlis’ theorem) that if X = (X1, X2, X3, X4) is a multivariate normal random
vector, then:

E [X1X2X3X4] = E [X1X2]E [X3X4] + E [X1X3]E [X2X4] + E [X1X4]E [X2X3] .
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Solution 2.4
For a white noise process we have (informally replacing X̄ with µ like in class)

E [γ̂τ ] =
1

n

n−|τ |∑
t=1

E
[
(Xt − µ)

(
Xt+|τ | − µ

)]
=

{
σ2
X if τ = 0

0 otherwise.
E [γ̃τ ] =

{
σ2
X if τ = 0

0 otherwise.

Furthermore,

Var (γ̂τ ) =
1

n2

n−|τ |∑
t1=1

n−|τ |∑
t2=1

Cov
(
(Xt1 − µ)

(
Xt1+|τ | − µ

)
, (Xt2 − µ)

(
Xt2+|τ | − µ

))
=

1

n2

n−|τ |∑
t1=1

n−|τ |∑
t2=1

{
E
[
(Xt1 − µ)

(
Xt1+|τ | − µ

)
(Xt2 − µ)

(
Xt2+|τ | − µ

)]
−E

[
(Xt1 − µ)

(
Xt1+|τ | − µ

)]
E
[
(Xt2 − µ)

(
Xt2+|τ | − µ

)]}
Using Isserlis’ theorem, we find

E
[
(Xt1 − µ)

(
Xt1+|τ | − µ

)
(Xt2 − µ)

(
Xt2+|τ | − µ

)]
= γX(|τ |)γX(|τ |) + γX (t1 − t2) γX (t1 − t2) + γX (t1 − t2 − |τ |) γX (t1 − t2 + |τ |)

For white noise we have γX(τ) = σ2
Xδτ where

δτ =

{
1 τ = 0,

0 otherwise.

Thus we get

Cov
(
(Xt1 − µ)

(
Xt1+|r| − µ

)
, (Xt2 − µ)

(
Xt2+|τ | − µ

))
= σ4

Xδt1−t2 + σ4
Xδt1−t2δτ .

We therefore find that

Var (γ̂τ ) =
1 + δτ
n2

σ4
X(n− |τ |).

It follows directly that

Var (γ̃τ ) =
1 + δτ
n− |τ |

σ4
X .

The mean square error is then (for white noise)

MSE (γ̂τ ) = (0)2 +
n− |τ |
n2

(1 + δτ )σ
4
X ,

whilst

MSE (γ̃τ ) = (0)2 +
1

n− |τ |
(1 + δτ )σ

4
X .

Thus is this case the biased estimator γ̂ wins out.

For the MA(1) process, Cov
(
Xt, Xt+|τ |

)
= δτ

(
1 + θ2

)
σ2
X − δ|τ |−1θσ

2
X and this goes into the calculations.

Exercise 2.5
Assume we know the mean of Xt and it is µ. Form the estimator

γ̄(α)
τ = αγ̃τ + (1− α)γ̂τ

For Xt Gaussian white noise determine the MSE of γ̄
(α)
τ . For σ2

X = 1, τ = 1 and n = 10 plot it as a function of
α. What value of α is appropriate?
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Solution 2.5
Wlog we may assume that µ = 0, else we may define a new process, say X∗

t = Xt − µ, s.t. γX∗ = γX . For a

white noise process, we note that both γ̃ and γ̂ are unbiased, and hence γ̄(u) is also unbiased, i.e. E[γ̄(α)
τ ] = γ(τ)

; see Exercise 2.4. Thus, for a white noise process, we may re-write the MSE(γ̄
(α)
τ ) as:

MSE(γ̄(α)
τ ) = E[(γ̄(α)

τ − γ(τ))2] = E[(γ̄(α)
τ − E[γ̄(α)

τ ])2] = Cov
(
γ̄(α)
τ , γ̄(α)

τ

)
= Cov (αγ̃τ + (1− α)γ̂τ , αγ̃τ + (1− α)γ̂τ ) .

We continue by expanding the terms inside the covariance

MSE(γ̄(α)
τ ) = α2Cov(γ̃τ , γ̃τ ) + 2α(1− α)Cov(γ̃τ , γ̂τ ) + (1− α)2Cov(γ̂τ , γ̂τ ). (3)

We use the fact that γ̂τ = n−|τ |
n γ̃τ to compute

Cov (γ̃τ , γ̂τ )) =
n− |τ |

n
Var(γ̃τ ),

Var(γ̂τ ) =
{n− |τ |

n

}2

Var(γ̃τ ).

For the time being, assume that Var(γ̃τ ) = V (τ), and let C(τ) = n−|τ |
n . Then we note

MSE(γ̄(α)
τ ) = (α− αC(τ) + C(τ))2V (τ).

A good choice of α can be computed by minimizing MSE(γ̄
(α)
τ ). Since V (τ) is not dependent on α for a given

τ , we simply minimize (α−αC(τ) +C(τ))2. We have for τ > 0 that C(τ) < 1 hence the expression in brackets
is always positive for |τ | < n. Differentiation wrt. α yields

(α− αC(τ) + C(τ))(1− C(τ))
!
= 0,

from where, for τ > 0, we can pick α = C(τ)/(C(τ)− 1). For τ = 0 any choice of α leaves the MSE unchanged.

We demonstrate this for the case when Xt is a Gaussian white noise. From Exercise 2.4, we already know
Var(γ̃τ ) =

1+δτ
n−|τ |σ

4
X . Finally, for τ > 0, replacing n = 10, σX = 1 we obtain

MSE(γ̄(α)
τ ) =

{
α− α

n− |τ |
n

+
n− |τ |

n

}2 1

n− |τ |
(4)

In Figure 1 we plot the MSE for τ = 1 as a function of α.

Exercise 2.6
Show that for any series {x1, . . . , xn} the sample autocovariance satisfies

∑
|τ |<n γ̂τ = 0.

Solution 2.6
Let X̄ = (

∑n
t=1 Xt)/n. We compute:

n−1∑
τ=−n+1

γ̂τ =
1

n

n−1∑
τ=−n+1

n−|τ |∑
t=1

(Xt − X̄)(Xt+|τ | − X̄)

=
1

n

n∑
t1=1

n∑
t2=1

(Xt1 − X̄)(Xt2 − X̄)

=
1

n
(

n∑
t=1

(Xt − X̄))2

= 0.
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Figure 1: MSE of the autocovariance estimate for different values of α.
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