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Exercise 2.1
When we defined the MA(q) process we specified 8y = —1. In terms of the covariance structure for moving
average processes, why do we not gain more generality by letting 6y be an arbitrary number?

Solution 2.1

If we change the first coefficient, then we can divide through the specifying equation by that number and obtain a
new process with the same autocorrelation. So for identifiability purpose, we force the coefficient to be 8y = —1.

For example, let’s consider the first order moving average process, MA(1), when p = 0. In other words, the
process is determined by 6y = —1 and 6;:

Xt = —90675 - 91675,1 = € — 916t71. (1)

where ¢, ~ N(0,02). Assuming there is another parametrization for the process using 6, = cfy = ¢ and 6 for
some ¢ # 0.

Xy = — ey = ce; — b1y (2)
where €], ~ N(0,02). If we rewrite (1) as

Xi =€ —Oie1
6 €t—1

= e — (etn) =L

Hence, 0] = cf; and ¢, = ¢~ l¢ for all t. Moreover, 052/ = ¢ 202. Note that the two representations have the

same autocovariance (and autocorrelation):

Var (X;) = (14 6%)o? from (1)

Var () = (65 + (61}
A1+ 603)c 202 =(1+6})0? from (2)
Cov (Xt, thl) = 909106
This shows us that there is an identifiability issue if we do not constrain 6y = —1. Specifically, there are multiple

MA(1) representations for X;, making the representation of X; non-unique.

Using the same argument to the general MA(q) process, we will reach the same conclusion as the MA(1) example.

Exercise 2.2
Determine that the moving average process defined by

Xt =&t — 96,5,1
can be written as
P
Xt =&t — Zert,j - 9p+15t,p,1
=1
for any positive integer value of p.



Solution 2.2

Note that for any integer value of p > 1, we have X;_, = e,_, — 01,1, SO
Et—p = Xi—p + 0ct—p_1
Applying the latter recursively we have
Xi=¢c—0sp 1 =6, —0(Xy_1+ 0 0) =y — 0X;_1 — 0%c;_»

=g —0X; 1 —6? (Xt—o+0es_3)
=& —0X4_1 — 92Xt—2 - 93€t—3

=&t — Z9Xt €tp1

Exercise 2.3
Assume that Y, = >7_ pJs—t€s and Z; = g’:_p hs_i€s where ¢, is zero-mean white noise. We define X,
pointwise by Y; + Z;. Determine the first and second moments of Xj;.

Solution 2.3

Let Var (e;) = 02 and rewrite X; = ISD:_p (gs—t + hs_t) €5. As €4 are uncorrelated, we have for all t,7 € T
P P
E [Xt] = Z (gsft + hsft) E (63) = Z (gsft + hsft) -0=0
s=—p s=—p
P P
E[X:Xi1,] = Cov (X¢, Xi4r) = Cov Z (gs—t + hs—t) €s, Z (Gr—t—r +Fhi—t—7) &
S=—p l=—p
p p
= Z Z (gs—t +hs—t) (G1—t—7 +hi—t—7) Cov (€5, &)
s=—pl=—p
P
= 02 Z (gs—t + hs—t) (gs—t—T + h’S—t—T)
s=—p

Exercise 2.4
In the lectures we defined two different estimators for the ACVS:

—I7]

¥r |7.| Z {Xt X} {XH-ITl*X}

n—|7|

%:% > AKX = XF { Xy - X}

t=1

If X; has independent Gaussian realizations at each time point please calculate the mean, variance and mean-
square error of these estimators. Repeat the calculation for an MA(1) process. As in class to do the analysis
replace X by u = E (X)), arguing that for large samples this will be appropriate.

(Hint): There is a known result (Isserlis’ theorem) that if X = (X1, X5, X3, X4) is a multivariate normal random

vector, then:

E [X1X2X3X4] =K [XlXQ] E [X3X4] + E [Xng,] E [X2X4] + E [X1X4] E [X2X3] .



Solution 2.4

For a white noise process we have (informally replacing X with y like in class)

n—|7|
E[¥] =~ Z E[(Xe =) (Xiqpr) — 1))
o% ifr=0 - o2 ifr=0
= X . E [’77] = X .
0 otherwise. 0 otherwise.
Furthermore,
n—|r| n—|7|
Var (9,) = n2 Z Z Cov (X, — 1) (X qpr) — 1) » (Xty — 1) (Xtgi 7 — 1))
t1=1 to=1

n—|r|n—|7|

- n2 Z Z {E (X = 1) (Xeysir) — 1) (Koo = 1) (Xipr) — 1)

—E [(Xe, = 1) (Xey41r) — 1)) B [(Xeo = 1) (X7 — 1)}

Using Isserlis’ theorem, we find

E[(Xi, = 1) (Xeygir) — 1) (Xpy = 1) (Xegiir) — )]
=yx([TDyx (7)) +x (01 —t2) vx (t1 — t2) +vx (B — 2 — |T)) vx (L1 —t2 + |7])

For white noise we have vx (1) = 0% 4, where
5 = 1 7=0, .
0 otherwise.
Thus we get

Cov (X, — 1) (Xpy gy = 1) (Xey = 1) (Xtapir] = 1)) = OX Ot —t5 + Ox 0ty 1,0
We therefore find that

. 1+,
Var (3,) = — ok (n — |7]).
It follows directly that
. 146 4
V ) = .
ar ('Y ) n — |7_| Ox

The mean square error is then (for white noise)

7]

MSE (3,) = (0)* + 57 (1 + 6,) ok

whilst
MSE (7,) = (0)2 +

TL—|7" (1+57)JX

Thus is this case the biased estimator 4 wins out.
For the MA(1) process, Cov (X,g7 Xt+|r\) =90, (1 + 02) 0% — (5|T|,190'§( and this goes into the calculations.

Exercise 2.5
Assume we know the mean of X; and it is u. Form the estimator

) = oy + (1 - a)ir

For X; Gaussian white noise determine the MSE of "y&a). For 0% =1, 7 =1 and n = 10 plot it as a function of
«. What value of « is appropriate?



Solution 2.5
Wlog we may assume that y = 0, else we may define a new process, say X; = X; — u, s.t. 7x+~ = yx. For a

white noise process, we note that both 4 and 4 are unbiased, and hence 5(*) is also unbiased, ie. E["y&a)] = (1)

; see Exercise 2.4. Thus, for a white noise process, we may re-write the MSE(¥ (a))

MSE(3(V) = B[ —+(r))’] = B[ ~ E*])?] = Cov (34 w)
= Cov (07 + (1 — a)¥r, 0% + (1 — @)Fr) .
We continue by expanding the terms inside the covariance

MSE(’_Y‘I(-Q)) = OCQCOV('?'M ¥r) +2a(1 — a)Cov (Y-, 4r) + (1 — a)2COV(ﬁ/,,., Yr)- (3)

We use the fact that 4, = "_n‘Tl Y- to compute

JURN n—|\7 ~
Cov (777’77')) = | ‘Var(77)7

Var(3,) = {

LMFVar(’yT).

n

For the time being, assume that Var(3,) = V (1), and let C(7) = n=I7l Then we note

MSE(7\Y) = (a — aC(7) 4+ C(7))?V (7).

A good choice of a can be computed by minimizing MSE(%(-O‘)). Since V(1) is not dependent on « for a given
7, we simply minimize (o — aC(7) 4+ C(7))%2. We have for 7 > 0 that C(7) < 1 hence the expression in brackets
is always positive for |7]| < n. Differentiation wrt. « yields

(o —aC(r) + C(r)(1 - C(r)) =0,
from where, for 7 > 0, we can pick a = C(7)/(C(7) — 1). For 7 = 0 any choice of « leaves the MSE unchanged.

We demonstrate this for the case when X; is a Gaussian white noise. From Exercise 2.4, we already know
Var(7,) = 1‘*‘? ‘O'X Finally, for 7 > 0, replacing n = 10, cx = 1 we obtain

_ — 2 ]
MSE(;)/E—Q)):{&—O{n |T|+n |7-|} (4)

n n n— ||

In Figure 1 we plot the MSE for 7 = 1 as a function of «.

Exercise 2.6
Show that for any series {z1,...,2,} the sample autocovariance satisfies } -, ¥~ = 0.

Solution 2.6
Let X = (31—, X¢)/n. We compute:

n—1 n—|7|
Z ;Y‘r - Z Z Xt Xt+|‘r| - 7)
T=—n+1 T_fTLJrl t=1
=Y Y (K - X)X, - X)
[ o
1 n
=X
t=1
= 0.
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Figure 1: MSE of the autocovariance estimate for different values of «.



