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Definitions
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» Informally, a time series X; is just data recorded over time.

» We shall use the word ‘time series’ to mean both the data, and
the process from which the data is a realisation.

» More formally, we think of X; as a stochastic process, i.e. as a family

of random variables {X; : t € T} defined on a probability space
(Q,.7,P).

» In time series analysis the index (or parameter) set 7 is a set of time
points, very often R or AZ (or a subset of them).

» Here A € R is the time step between observations.
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Definition 14.1 ((Weak) Stationarity)

The time series {X;} is said to be second-order/weak or covariance
stationary if for all n > 1 for any t1,...,t, € T and for all 7 such that
t1 +7,...,thn+7 €T all the joint moments of order 1 and 2 of

Xtyy -, X, exist, are all finite and equal to the corresponding joint
moments of X¢ 47y .., Xeypr-

In fact this corresponds to that, for all t,s,7 € T

1. E[X{] = p,

2. Var (X¢) = 0% < o0,

3. E[XiXiyr] = E[Xs Xsir]-
One may deduce from this that E [X;X;,] can be written as a function of
7 only.
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We can go beyond the first two moments and define strong stationarity.

Definition 14.2 (Strong Stationarity)

The time series {X;} is said to be completely/strong or strictly stationary
if for all n > 1 for any ty,...,t, € T and for all 7 such that
ti +7,...,tn+ 7 €T the joint distribution of X, ..., Xy, is the same as
Xl'1+Tv 000 7th+T'
In general:

» second order stationary > strictly stationary,

» strict stationarity % 2nd order stationarity.
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Definition 14.3 (ACVS)

For a discrete time second-order stationary process {X:} we define the
autocovariance sequence (ACVS) by

v = Cov (Xo, X;), (14.1)

where 7 € Z is the Iig.

Definition 14.4 (ACF)

The autocorrelation sequence, usually called autocorrelation function,
(ACF) is defined as

pr = Corr (X¢, Xetr) (14.2)
for 7 € Z.

» We have p; = v, /7.
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Models
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Models

Definition 14.5 (MA(q))

Let {e;} be a mean-zero white noise process. Then we define the
g-th order moving average process, denoted MA(q), as

q
Xt = U — Z stt,j, (143)
Jj=0

where 6; are constants such that 6o = —1 and 64 # 0.

» The only constraint for stationarity is that |#;| < oo.
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Models

Definition 14.6 (AR(p))

Let {e:} be a mean-zero white noise process. Then we define the
p-th order autoregressive process, denoted AR(p), as

p
X = Z @i Xe—j + €, (14.4)
=1

where ¢; are constants such that ¢, # 0.

» The requirement for stationarity is that the roots of ®(z) are outside
the unit disc.

Sofia Olhede (EPFL) Time Series May 28, 2025 10/36



Models

Definition 14.7 (ARMA(p, q))

A time series {X:} is an autoregressive moving average process of order p
and g, denoted ARMA(p, q), if

p q
Xe=> ¢Xej—> Oker
=1 k=0

where {e:} is a mean-zero white noise process, and ¢, 0 are the same as
in the AR and MA cases respectively.

Often an observed signal exhibits a trend. This is a tendency to increase or
decrease over time. There may also be fluctuations over time. This model
is given by

Xe = pe + Y,

where p; is a time-dependent mean, and Y; is a stationary process, for
example u; = a + bt.
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v

First differences AX; = X; — Xi_1.

In fact for the first difference of a stationary process is stationary, so if
Y: was stationary then so is AY;.

v

v

It is convenient to define the backshift operator B. BX; = X;_1.

v

If we difference again then we arrive at

APXp = (X — Xe—1) — (Xeo1 — Xe—2)
=Xt —2Xi—1+ Xi2
=AY —AY; 1
= (Yt - Yt—l) - (Yt—l - yt—2)
=Y:—2Y:_1+ Yio.
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Models

The general linear process takes the form
o0
Xt = nget—k-
k=0

Theorem 14.8 (The Wold Decomposition Theorem)

Any stationary process X; can be expressed in the form X; = U; + V4
where

1. U; and Vi are uncorrelated processes
2. U; has the one-sided representation Us =), gk€t—u

3. V4 is singular
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» Consider inverting a process
X: = G(B)er = €: = G Y(B)X:.

The expansion of G1(B) in powers of B gives the AR form, provided
G~Y(B) admits a power expansion.

» Thus the model is invertible if |G~1(z)| < oo for |z| < 1.

» An AR ®(B)X; = ¢, is stationary if the roots of ®(z) are outside the
unit circle.
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When are you stationary/invertible?

» What does this mean in practice? We have treated General Linear

Processes!

» Assume we have an AR process (¢; is assumed to be a white noise

process):

1 48
X4 ox, S
£ 1071 100

Xt72 = &¢.

» We can write this with the backshift operator

1

48

®B)=I+-—-B——B?

10
Solve ®(z) = I+ {5z — {552> = 0.
This has solutions

v

v

1 48
150 0 t4X10 5
0= — — + =2

1048 48/50 48

» Stationary and invertible.
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When are you stationary/invertible?

Assume ¢; is a white noise process with variance o2. We then define
the moving average process by

v

Xt =&t — 261‘—1'

v

Is this a stationary process? Yep MAs are always stationary.

v

Is this an invertible process? We define 6(z) = 1 —2z. No, the root is
1/2. This is not outside the unit circle.

v

Can we define a process with the same auto-correlation? Note

Var (X;) = Var (¢ — 2¢;_1) = 502
Cov (Xt, XtJrT) = Cov (5t — 251»,1, Et+r — 25t+7'71)
=02 {00, — 201, —26_1, + 450} (14.5)
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When are you stationary/invertible?

» Assume ¢; is a white noise process with variance o2. We then define
the moving average process by

1
Xt =&t — Eﬁtfl.

» Is this a stationary process? Yep MAs are always stationary.

> Is this an invertible process? We define 6(z) = 1 — 1z. Yes, the root
is 2. This is outside the unit circle.

» Note

Var (X;) = Var (e; — 27 'e;_1) = 50%/4
Cov (Xt, Xt+7—) = Cov (Et — 2_151;71, Ettr — 2_1€t+7'71)

=02 {00, — 27101 — 2710 1, + 27200, }. (14.6)
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When are you stationary/invertible?

» Assume ¢; is a white noise process with variance o2. We then define
the ARMA process by

3 6
Xt + gXt—2 =é&r+ gEt—l-

We determine the polynomials ®(z) =1+ 322 and ©(z) = 1 + 8z.
This has roots z2 = —% and z = 5/6. Stationary then but not
invertible.
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Frequency domain time series

Frequency domain time series J

Sofia Olhede (EPFL) Time Series May 28, 2025 19/36



Frequency domain time series

Let {X:} be a real-valued discrete time stationary process with mean .
As a result of Herglotz's theorem,

1/2 .
Ny = / 2™ as!) (f). (14.7)
—1/2

Also, there exists an orthogonal increment process {Z(f)} on [—%, %]
such that

1
Xe = p+ / 21 e>"MqZ(f). (14.8)
~3
This equality holds in the mean—square sense. The process {Z(f)} has

properties for f,f' € [—3, 3]
1. E[dZ(f)] =0,
2. Var (dZ(f)) = dSU) (),

3. Cov(dZ(f),dZ(f")) = 0 if f # f'.
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Frequency domain time series

» If v € ¢!, the spectral density function is

_ 277_67271'1'7'1‘ (14'9)
TEL
for all f € R.
» In this case, this relates to the integrated spectrum by
f
S £y = / S(A)dA. (14.10)
—1/2m

» The spectral density function also satisfies, for all f € R

1. S(f) >0,
2. S(f)=S(~f),
3. [155 S dr =02
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Frequency domain time series

Consider a continuous time process {X:},.p, with autocovariance function
v € L1, then the spectral density function is

S (f) = /Oo y(r)e i dr (14.11)

—0o0

for f € R.
» If we construct the discrete-time process {X;},., by sampling the
continuous process, we get the aliasing relation

S(F) =D L (F+k). (14.12)

keZ

» The frequency % is called the Nyquist frequency, after which S (f)
repeats.
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Linear Time Invariant filters

Linear Time Invariant filters J
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Linear Time Invariant filters

» A digital filter L that transforms an input sequence into an output
sequence is called a linear time invariant (LTI) digital filter if it
satisfies scale preservation, superposition and time invariance.

» In this context we defined the transfer function, the frequency
response function and the impulse response function.
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Multivariate time series

Multivariate time series J
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Multivariate time series

{X:} denotes a real d-vector-valued discrete time stochastic process with

Second-order stationarity requires for all t

pk=E |:X1Sk)i| :
’ygk) = Cov (Xt(i)T, X,_Sk)> < 00,
450 = o (X1, X0)
to be independent of t.
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Multivariate time series

» Bivariate processes were considered in more detail, including special
forms of dependence such as processes with contemporaneous
correlation, processes with contemporaneous correlation.

» These processes also admit a spectral representation. Their
cross-covariance admits a cross-spectrum.
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Estimation
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» We can estimate the mean by i = X. Additionally we have

1 N—|r|

5, = N S X = XM Xy — X}, T=0,41,42,....
t=1
N—|r]

.1 - y
o= gy O e X e = X)y 720452

» To analyse this estimator we normally replace X with the population
version.
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» We then arrive at the spectral estimator via (when assuming p = 0)

(N-1)
SPI(F) = At Z A, ()e 2Tt
T=—(N-1)
2
N
— % > Xje 2miat) (14.13)
j=1

This estimator is asymptotically unbiased, inconsistent, and
approximately uncorrelated between special frequencies.
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. L

» We can define a tapered version of the periogram by taking

N 2
E ht’kXteizm-ft
t=1

S =

{h¢«} is a taper function.
» The multitaper estimator is for K > 2

K
ﬁmmf%Z$Wn
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» We can revisit the autoregressive processes.

v

We can obtain the Yule-Walker equations.

v

Estimation is based on estimating the ACVS with and without
tapering.

v

We can estimate the AR parameters using the
forward least squares estimator, the
backwards least squares estimator, and the
forward /backward least squares estimator.
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v

We also covered the Box Jenkins framework for modelling time series.
This included identification, based on autocovariance and partial
autocovariance plots.

v

The framework included estimation, using least squares, rather than
the Yule-Walker method of moments.

v

The framework included model checking using residual plots, and Box
Pierce statistics.

v

Overfitting and model choice using information criteria such as
Bayesian Information Criterion (BIC) and the Akaike Information
Criterion (AIC).
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Forecasting
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For h > 0, the minimum prediction mean square error forecast is attained
by
Xooh =E[Xogn | Xi,..., Xn]

n

For AR processes forecasting is very natural. How do we then forecast a

general ARMA?
We use the truncated predictions (see lecture 10). The residuals &; and

fitted values/predictions X/ are obtained recursively by

p
Z¢iX:_;+(01gt—1+"'+9q§t—q)7 t:17"'7n7

€t = 4§ i=1
0, otherwise .
P a
> 0iX i — 2 OEern—j, t+h>n,

n )=t j=1

th T Xegh, t+h=1,...,n,

0, t+h<0.
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» We can find the properties of the step-step ahead forecast error using
an infinite MA representation. (Theorem 10.6)

» Various measures of prediction performance were introduced.
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