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Definitions

I Informally, a time series Xt is just data recorded over time.
I We shall use the word ‘time series’ to mean both the data, and

the process from which the data is a realisation.
I More formally, we think of Xt as a stochastic process, i.e. as a family

of random variables {Xt : t ∈ T } defined on a probability space
(Ω,F ,P).

I In time series analysis the index (or parameter) set T is a set of time
points, very often R or ∆Z (or a subset of them).

I Here ∆ ∈ R is the time step between observations.
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Definitions

Definition 14.1 ((Weak) Stationarity)
The time series {Xt} is said to be second-order/weak or covariance
stationary if for all n ≥ 1 for any t1, . . . , tn ∈ T and for all τ such that
t1 + τ, . . . , tn + τ ∈ T all the joint moments of order 1 and 2 of
Xt1 , . . . ,Xtn exist, are all finite and equal to the corresponding joint
moments of Xt1+τ , . . . ,Xtn+τ .

In fact this corresponds to that, for all t, s, τ ∈ T
1. E [Xt ] = µ,
2. Var (Xt) = σ2 < ∞,
3. E [XtXt+τ ] = E [XsXs+τ ].

One may deduce from this that E [XtXt+τ ] can be written as a function of
τ only.
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Definitions

We can go beyond the first two moments and define strong stationarity.

Definition 14.2 (Strong Stationarity)
The time series {Xt} is said to be completely/strong or strictly stationary
if for all n ≥ 1 for any t1, . . . , tn ∈ T and for all τ such that
t1 + τ, . . . , tn + τ ∈ T the joint distribution of Xt1 , . . . ,Xtn is the same as
Xt1+τ , . . . ,Xtn+τ .

In general:
I second order stationary ; strictly stationary,
I strict stationarity ; 2nd order stationarity.
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Definitions

Definition 14.3 (ACVS)
For a discrete time second-order stationary process {Xt} we define the
autocovariance sequence (ACVS) by

γτ = Cov (X0,Xτ ) , (14.1)

where τ ∈ Z is the lag.

Definition 14.4 (ACF)
The autocorrelation sequence, usually called autocorrelation function,
(ACF) is defined as

ρτ = Corr (Xt ,Xt+τ ) , (14.2)

for τ ∈ Z.

I We have ρτ = γτ/γ0.
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Models

Definition 14.5 (MA(q))
Let {εt} be a mean-zero white noise process. Then we define the
q-th order moving average process, denoted MA(q), as

Xt = µ−
q∑

j=0
θjεt−j , (14.3)

where θj are constants such that θ0 = −1 and θq 6= 0.

I The only constraint for stationarity is that |θj | < ∞.
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Models

Definition 14.6 (AR(p))
Let {εt} be a mean-zero white noise process. Then we define the
p-th order autoregressive process, denoted AR(p), as

Xt =

p∑
j=1

φjXt−j + εt , (14.4)

where φj are constants such that φp 6= 0.

I The requirement for stationarity is that the roots of Φ(z) are outside
the unit disc.
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Models

Definition 14.7 (ARMA(p, q))
A time series {Xt} is an autoregressive moving average process of order p
and q, denoted ARMA(p, q), if

Xt =

p∑
j=1

φjXt−j −
q∑

k=0
θkεt−k

where {εt} is a mean-zero white noise process, and φj , θk are the same as
in the AR and MA cases respectively.

Often an observed signal exhibits a trend. This is a tendency to increase or
decrease over time. There may also be fluctuations over time. This model
is given by

Xt = µt + Yt ,

where µt is a time-dependent mean, and Yt is a stationary process, for
example µt = a + bt.
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Models

I First differences ∆Xt = Xt − Xt−1.
I In fact for the first difference of a stationary process is stationary, so if

Yt was stationary then so is ∆Yt .
I It is convenient to define the backshift operator B. BXt = Xt−1.
I If we difference again then we arrive at

∆2Xt = (Xt − Xt−1)− (Xt−1 − Xt−2)

= Xt − 2Xt−1 + Xt−2

= ∆Yt −∆Yt−1

= (Yt − Yt−1)− (Yt−1 − Yt−2)

= Yt − 2Yt−1 + Yt−2.

Sofia Olhede (EPFL) Time Series May 28, 2025 12 / 36



Models

The general linear process takes the form

Xt =
∞∑

k=0
gkεt−k .

Theorem 14.8 (The Wold Decomposition Theorem)
Any stationary process Xt can be expressed in the form Xt = Ut + Vt
where

1. Ut and Vt are uncorrelated processes
2. Ut has the one-sided representation Ut =

∑
u gkεt−u

3. Vt is singular
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Models

I Consider inverting a process

Xt = G(B)εt ⇒ εt = G−1(B)Xt .

The expansion of G−1(B) in powers of B gives the AR form, provided
G−1(B) admits a power expansion.

I Thus the model is invertible if |G−1(z)| < ∞ for |z| ≤ 1.
I An AR Φ(B)Xt = εt is stationary if the roots of Φ(z) are outside the

unit circle.
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Models

When are you stationary/invertible?
I What does this mean in practice? We have treated General Linear

Processes!
I Assume we have an AR process (εt is assumed to be a white noise

process):
Xt +

1
10Xt−1 −

48
100Xt−2 = εt .

I We can write this with the backshift operator

Φ(B) = I + 1
10B − 48

100B2.

I Solve Φ(z) = I + 1
10z − 48

100z2 = 0.
I This has solutions

z0 =
1
10

50
48 ±

√
1

100 + 4 × 48
100

48/50 =
5
48 ± 5

√
193

48 = 1.55, −1.34.

I Stationary and invertible.
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Models

When are you stationary/invertible?

I Assume εt is a white noise process with variance σ2. We then define
the moving average process by

Xt = εt − 2εt−1.

I Is this a stationary process? Yep MAs are always stationary.
I Is this an invertible process? We define θ(z) = 1− 2z. No, the root is

1/2. This is not outside the unit circle.
I Can we define a process with the same auto-correlation? Note

Var (Xt) = Var (εt − 2εt−1) = 5σ2

Cov (Xt ,Xt+τ ) = Cov (εt − 2εt−1, εt+τ − 2εt+τ−1)

= σ2 {δ0,τ − 2δ1,τ − 2δ−1,τ + 4δ0,τ} . (14.5)
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Models

When are you stationary/invertible?

I Assume εt is a white noise process with variance σ2. We then define
the moving average process by

Xt = εt −
1
2εt−1.

I Is this a stationary process? Yep MAs are always stationary.
I Is this an invertible process? We define θ(z) = 1 − 1

2z. Yes, the root
is 2. This is outside the unit circle.

I Note

Var (Xt) = Var
(
εt − 2−1εt−1

)
= 5σ2/4

Cov (Xt ,Xt+τ ) = Cov
(
εt − 2−1εt−1, εt+τ − 2−1εt+τ−1

)
= σ2 {δ0,τ − 2−1δ1,τ − 2−1δ−1,τ + 2−2δ0,τ

}
. (14.6)
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Models

When are you stationary/invertible?

I Assume εt is a white noise process with variance σ2. We then define
the ARMA process by

Xt +
3
5Xt−2 = εt +

6
5εt−1.

We determine the polynomials Φ(z) = 1 + 3
5z2 and Θ(z) = 1 + 6

5z.
This has roots z2 = −5

3 and z = 5/6. Stationary then but not
invertible.
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Frequency domain time series

Let {Xt} be a real-valued discrete time stationary process with mean µ.
As a result of Herglotz’s theorem,

γτ =

∫ 1/2

−1/2
e2πiτ f dS(I) (f ) . (14.7)

Also, there exists an orthogonal increment process {Z(f )} on
[
−1

2 ,
1
2
]

such that

Xt = µ+

∫ 1
2

− 1
2

e2πiftdZ(f ). (14.8)

This equality holds in the mean–square sense. The process {Z(f )} has
properties for f , f ′ ∈

[
−1

2 ,
1
2
]

1. E [dZ(f )] = 0,
2. Var (dZ(f )) = dS(I) (f ),
3. Cov (dZ(f ),dZ(f ′)) = 0 if f 6= f ′.
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Frequency domain time series

I If γ ∈ `1, the spectral density function is

S (f ) =
∑
τ∈Z

γτe−2πiτ f (14.9)

for all f ∈ R.
I In this case, this relates to the integrated spectrum by

S(I) (f ) =
∫ f

−1/2π
S (λ)dλ. (14.10)

I The spectral density function also satisfies, for all f ∈ R
1. S (f ) ≥ 0,
2. S (f ) = S (−f ),
3.

∫ 1/2π
−1/2π S (λ)dλ = σ2.
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Frequency domain time series

Consider a continuous time process {Xt}t∈R, with autocovariance function
γ ∈ L1, then the spectral density function is

S (f ) =
∫ ∞

−∞
γ (τ) e−2πiτ f dτ (14.11)

for f ∈ R.
I If we construct the discrete-time process {Xt}t∈Z by sampling the

continuous process, we get the aliasing relation

S (f ) =
∑
k∈Z

S (f + k) . (14.12)

I The frequency 1
2 is called the Nyquist frequency, after which S (f )

repeats.
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Linear Time Invariant filters

Linear Time Invariant filters
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Linear Time Invariant filters

I A digital filter L that transforms an input sequence into an output
sequence is called a linear time invariant (LTI) digital filter if it
satisfies scale preservation, superposition and time invariance.

I In this context we defined the transfer function, the frequency
response function and the impulse response function.
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Multivariate time series
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Multivariate time series

{Xt} denotes a real d-vector-valued discrete time stochastic process with

Xt =


X (1)

t
X (2)

t
...

X (d)
t


Second-order stationarity requires for all t

µk = E
[
X (k)

t

]
,

γ(k)τ = Cov
(

X (k)
t+τ ,X

(k)
t

)
< ∞,

γ(k,l)τ = Cov
(

X (k)
t+τ ,X

(l)
t

)
to be independent of t.
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Multivariate time series

I Bivariate processes were considered in more detail, including special
forms of dependence such as processes with contemporaneous
correlation, processes with contemporaneous correlation.

I These processes also admit a spectral representation. Their
cross-covariance admits a cross-spectrum.

Sofia Olhede (EPFL) Time Series May 28, 2025 27 / 36



Estimation

Estimation
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Estimation

I We can estimate the mean by µ̂ = X . Additionally we have

γ̃τ =
1

N − |τ |

N−|τ |∑
t=1

{Xt − X}{Xt+|τ | − X}, τ = 0,±1,±2, . . . .

γ̂τ =
1
N

N−|τ |∑
t=1

{Xt − X}{Xt+|τ | − X}, τ = 0,±1,±2, . . . .

I To analyse this estimator we normally replace X with the population
version.
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Estimation

I We then arrive at the spectral estimator via (when assuming µ = 0)

Ŝ(p)(f ) = ∆t
(N−1)∑

τ=−(N−1)
γ̂τ (τ)e−2iπf τ∆t

=
∆t
N

∣∣∣∣∣∣
N∑

j=1
Xje−2iπfj∆t

∣∣∣∣∣∣
2

. (14.13)

This estimator is asymptotically unbiased, inconsistent, and
approximately uncorrelated between special frequencies.
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Estimation

I We can define a tapered version of the periogram by taking

Ŝ(p)
hk

(f ) =

∣∣∣∣∣
N∑

t=1
ht,kXte−2iπft

∣∣∣∣∣
2

.

{ht,k} is a taper function.
I The multitaper estimator is for K ≥ 2

Ŝ(mt)(f ) = 1
K

K∑
k=1

Ŝ(p)
hk

(f ).
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Estimation

I We can revisit the autoregressive processes.
I We can obtain the Yule–Walker equations.
I Estimation is based on estimating the ACVS with and without

tapering.
I We can estimate the AR parameters using the

forward least squares estimator, the
backwards least squares estimator, and the
forward/backward least squares estimator.
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Estimation

I We also covered the Box Jenkins framework for modelling time series.
This included identification, based on autocovariance and partial
autocovariance plots.

I The framework included estimation, using least squares, rather than
the Yule-Walker method of moments.

I The framework included model checking using residual plots, and Box
Pierce statistics.

I Overfitting and model choice using information criteria such as
Bayesian Information Criterion (BIC) and the Akaike Information
Criterion (AIC).
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Forecasting

Forecasting
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Forecasting

For h > 0, the minimum prediction mean square error forecast is attained
by

Xn
n+h = E [Xn+h | X1, . . . ,Xn]

For AR processes forecasting is very natural. How do we then forecast a
general ARMA?
We use the truncated predictions (see lecture 10). The residuals ε̂t and
fitted values/predictions Xn

t are obtained recursively by

ε̂t =


p∑

i=1
φiXn

t−i + (θ1ε̂t−1 + · · ·+ θqε̂t−q) , t = 1, . . . , n,

0, otherwise .

Xn
t+h =


p∑

i=1
φiXn

t+h−i −
q∑

j=1
θj ε̂t+h−j , t + h > n,

Xt+h, t + h = 1, . . . , n,
0, t + h ≤ 0.
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Forecasting

I We can find the properties of the step-step ahead forecast error using
an infinite MA representation. (Theorem 10.6)

I Various measures of prediction performance were introduced.
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