
Time Series Solutions to Mock Exam
1. (a) The time series {Xt} is said to be second-order/weak or covariance stationary if for

all n ≥ 1 for any t1, . . . , tn ∈ Z and for all τ such that t1 + τ, . . . , tn + τ ∈ Z all the
joint moments of order 1 and 2 of Xt1 , . . . , Xtn exist, are all finite and equal to the
corresponding joint moments of Xt1+τ , . . . , Xtn+τ .
Equivalently, ∀t, s ∈ Z, ∀τ such that t+ τ, s+ τ ∈ Z

1. E [Xt] = µ,
2. Var (Xt) = σ2 < ∞,
3. E [XtXt+τ ] = E [XsXs+τ ].

The time series {Xt} is said to be completely/strong or strictly stationary if for all n ≥ 1
for any t1, . . . , tn ∈ Z and for all τ such that t1 + τ, . . . , tn + τ ∈ Z the joint distribution
of Xt1 , . . . , Xtn is the same as Xt1+τ , . . . , Xtn+τ .

(b) An ARMA(p,q) process is specified by

Xt = φ1Xt−1 + φ2Xt−2 + . . . φpXt−p + εt − θ1εt−1 − . . .− θqεt−q,

where φi and φi are constants for i = 1, . . . , p, and for i = 1, . . . , p, and {εt} is a white
noise process.

(c)
cov (Xt, Xt+τ ) =E [XtXt+τ ]− E [Xt]E [Xt+τ ]

=E [(εt − 0.2εt−1 + 0.1εt−2) (εt+τ − 0.2εt+τ−1 + 0.1εt+τ−2)]

=E [εtεt+τ − 0.2εtεt+τ−1 + 0.1εtεt+τ−2

− 0.2εt−1εt+τ + 0.04εt−1εt+τ−1 − 0.02εt−1εt+τ−2

+0.1εt−2εt+τ − 0.02εt−2εt+τ−1 + 0.01εt−2εt+τ−2]

=E [εtεt+τ ]− 0.2E [εtεt+τ−1] + 0.1E [εtεt+τ−2]

− 0.2E [εt−1εt+τ ] + 0.04E [εt−1εt+τ−1]− 0.02E [εt−1εt+τ−2]

+ 0.1E [εt−2εt+τ ]− 0.02E [εt−2εt+τ−1] + 0.01E [εt−2εt+τ−2]

=



0.1σ2 if τ = −2,

−0.22σ2 if τ = −1,

1.05σ2 if τ = 0,

−0.22σ2 if τ = 1,

0.1σ2 if τ = 2,

0 otherwise.
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2. (a) First note that the roots of both Φ(z) =
(
1 + 0.042 − 0.5z

)
, and Θ(z) = (1 + 0.25z)

lie outside of the unit circle, hence the process is both causal and invertible. For the
moment define the new process Zt := (1 + 0.25B)εt, so that(

1 + 0.042 − 0.5B
)
Xt = Zt.

To transform Φ(z) into a monic polynomial, we divide by
(
1 + 0.042

)
.

We re-write Xt as (
1− 0.5

1 + 0.042
B

)
Xt =

Zt

1 + 0.042
=

1 + 0.25B

1 + 0.042
εt.

In its infinite series representation we get

Xt =
1

1 + 0.042
Zt

1− 0.5
1+0.042B

=

∞∑
k=0

(
0.5

1 + 0.042

)k
1

1 + 0.042
Zt−k

We are not done yet, as Zt = (1 + 0.25B)εt; hence using this we compute,

Xt =

∞∑
k=0

(
0.5

1 + 0.042

)k
1 + 0.25B

1 + 0.042
εt−k

=

∞∑
k=0

(
0.5

1 + 0.042

)k
1

1 + 0.042
εt−k +

∞∑
k=0

(
0.5

1 + 0.042

)k
0.25

1 + 0.042
εt−(k+1)

=
εt

1 + 0.042
+

∞∑
k=1

(
0.5

1 + 0.042

)k
1

1 + 0.042
εt−k +

∞∑
k=0

(
0.5

1 + 0.042

)k
0.25

1 + 0.042
εt−(k+1)

=
εt

1 + 0.042
+

∞∑
k=0

(
0.5

1 + 0.042

)k+1
1

1 + 0.042
εt−(k+1) +

∞∑
k=0

(
0.5

1 + 0.042

)k
0.25

1 + 0.042
εt−(k+1)

=
εt

1 + 0.042
+

∞∑
k=0

{(
0.5

1 + 0.042

)k+1
1

1 + 0.042
+

(
0.5

1 + 0.042

)k
0.25

1 + 0.042

}
εt−(k+1)

and so λ0 = 1
1+0.042 , and λk+1 =

{(
0.5

1+0.042

)k+1
1

1+0.042 +
(

0.5
1+0.042

)k
0.25

1+0.042

}
for

εt−(k+1), k ≥ 0.

(b) The autocovariance function of the MA(∞)
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cov (Xt, Xt+τ ) = cov

( ∞∑
n1=0

λn1εt−n1 ,

∞∑
n2=0

λn2εt+τ−n2

)

=

∞∑
n1=0

∞∑
n2=0

λn1λn2 cov (εt−n1 , εt+τ−n2)

=

∞∑
n1=0

λn1λn1+τ var (εt−n1) =

∞∑
n1=0

λn1λn1+τσ
2
ε

with the coefficients λn1
given in (a).

We have

λn1λn1+τ =
1

(1 + 0.042)
2

{(
0.5

1 + 0.042

)2n1+τ+2

+ 2

(
0.5

1 + 0.042

)2n1+τ+1

0.25 +

(
0.5

1 + 0.042

)2n1+2τ

0.252

}

and so∑∞
n1=0 λn1λn1+τσ

2
ε =

σ2
ε

(1+0.042)2
1

1− 0.52(
1+0.042

)2
{(

0.5
1+0.042

)τ+2

+ 0.5
(

0.5
1+0.042

)τ+1

+ 0.252
(

0.5
1+0.042

)2τ}
.

(c) Method 1 Starting with X1, . . . , Xn, we may go backwards to estimate the error terms
ε1, . . . , εn, as follows. For t = 0 we let X0 = ε0 = 0.
Then, ε1 =

(
1 + 0.042

)
X1 − 0.5X0 − 0.25ε0 =

(
1 + 0.042

)
X1. We then proceed re-

cursively, to find εk =
(
1 + 0.042

)
Xk − 0.5Xk−1 − 0.25εk−1. Finally once we estimate

ε1, . . . εn, we may predict Xn+1 from the infinite series representation with coefficients
in (a), and after truncating at k = 5 we obtain

X̂n+1 = E

 5∑
j=0

λkεn+1−k | Xn, . . . X1

 = E

 5∑
j=1

λkεn+1−k | Xn, . . . X1

 =

5∑
j=1

λkεn+1−k

Method 2 For simplicity let φ0 =
(
1 + 0.042

)
, φ1 = 0.5, θ = −0.25. From here we find

ε0 = 0

ε1 = φ0X1

ε2 = φ0X2 − φ1X1 + θ1ε1 = φ0X2 − (φ1 − θ1φ0)X1

ε3 = φ0X3 − φ1X2 + θ1ε2 = φ0X3 − (φ1 − θ1φ0)X2 − θ1 (φ1 − θ1φ0)X1

Now that we see a pattern we may proceed via induction and claim that

εk = φ0Xk −
k−1∑
j=1

θj−1
1 (φ1 − θ1φ0)Xk−j

Clearly this is true for k = 1, 2, 3, so assume that it holds for some k > 3, and now focus
on k + 1.
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We then get

εk+1 = φ0Xk+1 − φ1Xk + θεk

= φ0Xk+1 − φ1Xk + θ

φ0Xk −
k−1∑
j=1

θj−1
1 (φ1 − θ1φ0)Xk−j


= φ0Xk+1 − (φ1 − θ1φ0)Xk −

k−1∑
j=1

θj1 (φ1 − θ1φ0)Xk−j

= φ0Xk+1 −
k−1∑
j=0

θj1 (φ1 − θ1φ0)Xk−j

= φ0Xk+1 −
(k+1)−1∑

j=1

θj−1
1 (φ1 − θ1φ0)X(k+1)−j

Finally we we may predict XT+1 via,

X̂T+1 = E (XT+1 | XT , . . . X1) =
0.5XT + 0.25εT

1 + 0.042

where for εT we can use the formula above of εk.

3. (a) We first rewrite Ŝp (f) as

Ŝp (f) =
1

N

N∑
t1=1

N∑
t2=1

Xt1Xt2 exp {−2iπf (t1 − t2)}

Applying the expectation operator E, and noting that Cov (Xt1 , Xt2) = E (Xt1Xt2) (mean
is zero) we obtain

E
(
Ŝp (f)

)
=

1

N

N∑
t=1

E (XtXt) = Var (Xt) = σ2

4



(b) We rewrite Ŝp(f) again as

Ŝp(f) =
1

N

N−1∑
τ=−N+1

N−|τ |∑
t=1

XtXt+τ exp{−2iπfτ} =
N−1∑

τ=−N+1

γ̂
(p)
X (τ) exp{−2iπfτ}

Integrating, and using linearity of the integral operator in the first passage, we compute

∫ 1/2

−1/2

Ŝp(f)df =

N−1∑
τ=−N+1

∫ 1/2

−1/2

γ̂
(p)
X (τ) exp{−2iπfτ}df

=

N−1∑
τ=−N+1

γ̂
(p)
X (τ)

∫ 1/2

−1/2

exp{−2iπfτ}df

=

N−1∑
τ=−N+1

γ̂
(p)
X (τ)

∫ 1/2

−1/2

cos{−2πfτ}df

= γ̂
(p)
X (0) +

N−1∑
τ=−N+1\{0}

γ̂
(p)
X (τ)

sin{−πτ} − sin{πτ}
−2πτ

= γ̂
(p)
X (0)

In the third passage we have used Euler’s formula, and the fact that sine is an odd
function.
Taking expectation we obtain,

∫ 1/2

−1/2

Ŝp(f)df = E
(
γ̂
(p)
X (0)

)
= E

(
1

N

N∑
t=1

XtXt

)
= Var (Xt) = σ2

(c) We have that Xt = εt + θεt−1 so therefore

Cov (Xt+τ , Xt) = Cov (εt+τ + θεt+τ−1, εt + θεt−1)

= Cov (εt+τ , εt) + θCov (εt+τ , εt−1) + θCov (εt+τ−1, εt) + θ2 Cov (εt+τ−1, εt−1)

= σ2δτ,0 + θσ2δτ+1,0 + θσ2δτ−1,0 + θ2σ2δτ,0

=


σ2(1 + θ2) if τ = 0,

θσ2 if |τ | = 1,

0 otherwise.

This is invariant to t, and finite, and the mean is zero, hence the process is second-order
stationary. Now the autocovariance of {Xt} is therefore given by

γτ =


σ2(1 + θ2) if τ = 0,

θσ2 if |τ | = 1,

0 otherwise.
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The spectral density function is then by definition given by

S (f) =

∞∑
τ=−∞

γτe
−2πifτ

= θσ2e2πif + (1 + θ2)σ2 + θσ2e−2πif

= σ2(1 + θ2 + 2θ cos(2πf)).

4. (a) Recall that X
(1)
t = cX

(2)
t−d + εt. We need to check three conditions for second-order

stationarity.
Firstly, we need to check that the mean is constant over time. We have for all t ∈ Z

E
[
X

(1)
t

]
= E

[
cX

(2)
t−d + εt

]
= cE

[
X

(2)
t−d

]
+ E [εt]

= 0,

by assumption.
Secondly, we need to check that the variance is finite and constant over time. We have
for all t ∈ Z

Var
(
X

(1)
t

)
= Var

(
cX

(2)
t−d + εt

)
= c2 Var

(
X

(2)
t−d

)
+Var (εt)

< ∞,

again because both X
(2)
t and εt are assumed to be second-order stationary.

Finally, we need to check that the covariance is constant over time. We have for all
t, s, τ ∈ Z

Cov
(
X

(1)
t , X

(1)
t+τ

)
= Cov

(
cX

(2)
t−d + εt, cX

(2)
t+τ−d + εt+τ

)
= cCov

(
X

(2)
t−d, X

(2)
t+τ−d

)
+Cov (εt, εt+τ )

= cCov
(
X

(2)
s−d, X

(2)
s+τ−d

)
+Cov (εs, εs+τ )

= Cov
(
X(1)

s , X
(1)
s+τ

)
,

by stationarity of X(2)
t and εt.
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(b) We already know that both X
(1)
t and X

(2)
t are second-order stationary, so we need only

check the cross-covariance is invariant to shifts in time. We have for all t, s, τ ∈ Z

Cov
(
X

(1)
t+τ , X

(2)
t

)
= Cov

(
cX

(2)
t−d+τ + εt, X

(2)
t

)
= cCov

(
X

(2)
t−d+τ , X

(2)
t

)
+Cov

(
εt, X

(2)
t

)
= cCov

(
X

(2)
s−d+τ , X

(2)
s

)
+ 0

= Cov
(
X

(1)
s+τ , X

(2)
s

)
,

where we used the fact that εt is uncorrelated with X
(2)
t , and the stationarity of X(2)

t .

(c) Note that from the previous working (setting s = 0) we have

γ(1,2)
τ = cγ

(2,2)
τ−d + 0 = cγ

(2,2)
τ−d

γ(2,1)
τ = Cov

(
X

(1)
t−τ , X

(2)
t

)
= cγ

(2,2)
τ−d

γ(1,1)
τ = c2γ(2,2)

τ + σ2
ε δτ,0.

Write S2,2 (f) for the spectral density of X(2)
t at f ∈ R.

S2,2 (f) =

∞∑
τ=−∞

γ(2,2)
τ e−2πifτ

Then we have

S1,2 (f) =

∞∑
τ=−∞

γ(1,2)
τ e−2πifτ

=

∞∑
τ=−∞

cγ
(2,2)
τ−d e

−2πifτ

= c

∞∑
τ ′=−∞

γ
(2,2)
τ ′ e−2πif(τ ′+d) (setting τ ′ = τ − d)

= ce−2πifd
∞∑

τ ′=−∞
γ
(2,2)
τ ′ e−2πifτ ′

= ce−2πifdS2,2 (f) .
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By symmetry we also have

S2,1 (f) =

∞∑
τ=−∞

γ
(1,2)
−τ e−2πifτ

=

∞∑
τ=−∞

γ
(1,2)
τ ′ e2πifτ

′
(setting τ ′ = −τ)

= S2,1 (f)
∗

ce2πifdS2,2 (f) .

Finally, we have

S1,1 (f) =

∞∑
τ=−∞

γ(1,1)
τ e−2πifτ

=

∞∑
τ=−∞

(
c2γ(2,2)

τ + σ2
ε δτ,0

)
e−2πifτ

= c2
∞∑

τ=−∞
γ(2,2)
τ e−2πifτ + σ2

ε .
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