Time Series Solutions to Mock Exam

1. (a)

The time series {X;} is said to be second-order/weak or covariance stationary if for
all n > 1 for any t1,...,t, € Z and for all 7 such that t; + 7,...,t, + 7 € Z all the

joint moments of order 1 and 2 of X, ,..., X, exist, are all finite and equal to the
corresponding joint moments of X;, 4 +,..., X, 4.
Equivalently, Vt,s € Z, V7 such that t + 7,s + 7€ Z

1. E [Xt] = W,

2. Var (X;) = 02 < oo,
3. E [XtXt+7-] = E [X5X5+7-]c
The time series {X;} is said to be completely /strong or strictly stationary if for all n > 1

for any t1,...,t, € Z and for all 7 such that t; +7,...,t, + 7 € Z the joint distribution
of X¢,,..., X, is the same as Xy, 4r,..., Xy, 47

An ARMA (p,q) process is specified by
Xe=01 Xo 1+ 02 Xp o+ . 0pXipt+e — 0161 — ... — 0461,

where ¢; and ¢; are constants for i = 1,...,p, and for i = 1,...,p, and {e:} is a white
noise process.

cov (X, Xpsr) =E [Xo Xeir] — E[X,] E [Xigr]
=E[(e; —0.2¢6;,_1 + 0.1€;—2) (447 — 0.26447—1 + 0.1€147—2)]
=E [et€14+ — 0261644 7-1 + 0.1€r€447—2
—0.2¢;_1€04+ +0.04de,_1€64 71 — 0.0264 164472
+0.1€;—0€r4+ — 0.02€6;_o€¢1+—1 + 0.01€er_o€s 1+ 9]
=E [ere41+]) — 0.2E [erer4r—1] + 0.1E [er€47 2]
—0.2E[e;—1€447] + 0.04E [e;—1€147—1] — 0.02E [€1—1 €147 —2]
+ 0.1E [ez—2€¢1 -] — 0.02E [e;—2€44r—1] + 0.01E [€1—2€147—2]
0.1¢02 if 7 =-2,
—0.2202 if T =-1,
1.0502 if =0,
-0.220% ifr =1,
0.102 if =2,
0 otherwise.




(b)

First note that the roots of both ®(z) = (1+ 0.04> —0.5z), and ©(z) = (1 + 0.252)

lie outside of the unit circle, hence the process is both causal and invertible.

moment define the new process Z; := (1 + 0.25B)¢;, so that

(14 0.04* — 0.5B) X; = Z,.

To transform ®(z) into a monic polynomial, we divide by (1 + 0.042).
We re-write X; as

( 0.5 ) 7 1+0.25B
t

1+0.042 140022 140042

In its infinite series representation we get

oo k
1 A . 1
Xy = 2 t = Z ( 0o 2) 5 2tk

We are not done yet, as Z; = (1 + 0.25B)e;; hence using this we compute,
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and so Ao = g, and Agy1 = {(1+0.042) 7004z T (1+0.o42) 1+0.042} for

€t—(k+1): & > 0.

The autocovariance function of the MA(c0)

—(k+1)



cov (X, Xy yr) = cov (Z Ani€t—ny, Z )\nget—i-‘r—ng)

7L1:0 TL2:O
oo

oo
= E E )\nl )\ng cov (et—nl ) 6t+7’—n2)

n1—0n2—0
= E Any Ay 47 var (€, ) E )\nl)\erTa
’ﬂl_O ’I’Ll_O

with the coefficients A, given in (a).
We have

1 05 2n,+7+2 05 2n,+7+1 0 5 2n,+271
My Ay = o —= 025+ [ ——— 0.252
MM T 1 0.042)? {<1+0.042) * <1+0.042) +<1+0042)

and so )
2 T+2 T+1 T
o 1 0. 0
an =0 )‘nl)‘n1+T02 (1+0. 042)2 0.52 ) { (1+0.5042> +0.5 <1+O 042> + 0. 252 (1+0 042) }

(1+0.042

(c) Method 1 Starting with X4, ..., X,,, we may go backwards to estimate the error terms
€1,-.-,€n, as follows. For t = 0 we let Xy = ¢y = 0.

Then, e; = (1+0.04%) X; — 0.5Xy — 0.25¢9 = (1+0.04%) X;. We then proceed re-
cursively, to find ¢, = (1 + 0.042) X — 0.5X;_1 — 0.25¢,_1. Finally once we estimate
€1,...€n, we may predict X, 11 from the infinite series representation with coefficients
in (a), and after truncating at k = 5 we obtain

5 5

5
X1 =E (D Aensrn | Xnyoo o Xo | =E | D Meenpaon | Xnpoo o X1 | =3 Meengaon
j=0 j=1 j

Method 2 For simplicity let ¢g = (1 + 0.042) ,¢1 = 0.5,0 = —0.25. From here we find

=0
= ¢oX1
€2 = poXo2 — $1 X1 + 0161 = poXo — (d1 — 0100) X1
€3 = g0 X3 — p1 X2 + Ore2 = Po X3 — (1 — O1¢0) X2 — 01 (1 — O1¢0) X1

Now that we see a pattern we may proceed via induction and claim that

k—1

ek = o Xy — ) 017" (61— 0100) X

j=1

Clearly this is true for k£ = 1,2, 3, so assume that it holds for some k > 3, and now focus
on k + 1.



We then get

€ht1 = PoXpq1 — P1 Xy + Oy,
k=1
= oo Xp41 — 01 Xp + 0 | po Xy — 29{_1 (p1 — 0100) Xi—j

j=1

k-1
= ¢oXpy1 — (61 — O10) Xi — 29{ (1 — 0100) X

=1
k=1
= o Xpt+1 — Z 67 (p1 — 61¢0) Xi—;
=0
(k+D)-1
= poXp+1 — Z 017" (61 — 0100) KX(kt1)—j
j=1

Finally we we may predict Xr4; via,

A 0.5X7 +0.25¢
XT+1 == E(XT+1 | )(T7 .. Xl) == W

where for e we can use the formula above of €.

We first rewrite S, (f) as

N N
Sy (f) = % SN X, Xy, exp {—2inf (t — ta)}
t1=1t2=1

Applying the expectation operator E, and noting that Cov (X, , X3,) = E (X, X+,) (mean
is zero) we obtain

N
E (Sp (f)) - % Y E(X. X)) = Var(X,) = o
t=1



We rewrite S,(f) again as

N—-1 N-|7| N-1
A 1 . R .
5= S Y XiXerexp{-2infry= Y 4P (r)exp{-2infr}
N+1 t=1 T=—N+1

Integrating, and using linearity of the integral operator in the first passage, we compute

/2 N-1 1/2
[ sma= Y [T @ew(-2insriar

—1/2 =Nyl -1/2
N-1 ® 1/2
= Z ¥ (T)/ exp{—2iw fr}df
T=—N+1 -1/2
N-1 1/2
= Y W0 [ cost-2apra
r=—N+1 -1/2
e sin{—n7} — sin{n7}
=+ Y AWE—
T
T=—N+1\{0}
=3¥(0)

In the third passage we have used Euler’s formula, and the fact that sine is an odd
function.
Taking expectation we obtain,

/1/2 Sp(f)df = E( ®) (g ) ( ZXtXt> = Var(X;) = o

—1/2
We have that X; = ¢; + 0¢;_1 so therefore

Cov (Xiyr, Xy) = Cov (€447 + O€ryr—1,6: + Oe4_1)
= Cov (€147, €) +0Cov (€447, €6-1) +0Cov (1171, €) + 02 Cov (€117_1,€-1)
=0%0r0+ 005,410 + 00°0,_10 + 0%0%5,
o2(1+62%) ifr=0,
=< o2 if |7] =1,
0 otherwise.

This is invariant to ¢, and finite, and the mean is zero, hence the process is second-order
stationary. Now the autocovariance of {X;} is therefore given by

a?(1+62%) ifr=0,
Yr = { O0? if |7[=1,
0 otherwise.



The spectral density function is then by definition given by

y(f): Z 77_6727rif‘r

— 0522 1 (14 62)02 + 0o2e~ 2
= 0%(1 + 62 + 20 cos (2 f)).

Recall that Xt(l) = cXt(z)d + &;. We need to check three conditions for second-order
stationarity.

Firstly, we need to check that the mean is constant over time. We have for all t € Z
E[x{V] =E|ex?, +4
— & [x{%,] +E[ed]
= 0,

by assumption.

Secondly, we need to check that the variance is finite and constant over time. We have
forallt e Z

Var (Xt(l)) = Var (cXt(i)d + Et)
= ¢? Var (Xt(i)d) + Var (&)
< 00,

again because both Xt(Q) and ¢, are assumed to be second-order stationary.

Finally, we need to check that the covariance is constant over time. We have for all
t,s,Te”Z

Cov (Xt(l), Xt(i)T) = Cov (cXt(z)d + &, cXt(i)T_d + st+T)
= cCov (Xt(i)d, Xt(i)de) + Cov (&4, €41)
= cCov (XgQ_)d, XSF)T_d> + Cov (€4, E547)

= Cov (Xs(l), XSQT) :

by stationarity of Xt(Q) and &;.



(b)  We already know that both Xt(l) and Xt(z) are second-order stationary, so we need only
check the cross-covariance is invariant to shifts in time. We have for all ¢,s,7 € Z

Cov( t(i)ﬂX 2)) Cov (cXt( )d+T —l—st,Xt(Q))
= cCov (X75(2)d+7—7Xt(2)) + Cov (et,Xt(Q))
= cCov (X§3d+T,X£2)) +0
— Cov (ngT, X§2>) ,
where we used the fact that €, is uncorrelated with Xt(Q), and the stationarity of Xt(Z).

(¢) Note that from the previous working (setting s = 0) we have
2,2 2,2
W = Y F 0= )

’yﬁz’l) = Cov (Xt(P Xt(Q)) c 9 3)

T

A = 22 1 g2,

Write Sy (f) for the spectral density of Xt(Q) at f €R.

522 Z 7(22 —2mifT

T=—00

Then we have

5172 (f) _ Z 7§1’2)€72mﬁ

_ Z C,Y(Q ,2) —27rzf7'
=c Z 7(2 12) g =2mif (7' +d) (setting 7/ = 7 — d)

— —27rzfd Z (2 2)6—27rif7'/
7—/7

= 66_27”'de272 (f) .



By symmetry we also have

Sa1(f) = Z AP e=2mifT

T=—00

= Z ’YS’Q)GQWUT/ (setting 7/ = —7)
= S2,1 (f)"
062772'de272 (f) )

Finally, we have

o0

Sa()= 3 e

T=—00
[eS)

Z (02752’2) "‘0'6257,0) o—2mifT

T=—00

oo
— 2 Z 7&2,2)6—27@]07_#062.

T=—00



