

Time Series Exercise Sheet 9

Sofia Olhede

April 17, 2025

Exercise 9.1

For the process $\mathbf{Y}_t = (Y_t^{(1)}, Y_t^{(2)})^T$ generated by

$$Y_t^{(j)} = X_t^{(j)} + \varepsilon_t, \quad j = 1, 2$$

with $X^{(1)}, X^{(2)}$ and ε independent and where ε is white noise. Write

$$\begin{aligned}\sigma_j^2 &= \text{Var}(X_t^{(j)}) \\ \sigma_\varepsilon^2 &= \text{Var}(\varepsilon_t) \\ \tilde{\gamma}_\tau^{(1,2)} &= \text{Cov}(X_{t+\tau}^{(1)}, X_t^{(2)})\end{aligned}$$

Use $\gamma_\tau^{(1,2)}$ to denote the cross-covariance sequence between $\{Y_t^{(1)}\}$ and $\{Y_t^{(2)}\}$. Calculate the correlation between $\{Y_t^{(1)}\}$ and $\{Y_t^{(2)}\}$ at all lags.

Exercise 9.2

For the delay process, with $\alpha > 0$ and $\nu \in \mathbb{Z}$

$$X_t^{(1)} = \alpha X_{t-\nu}^{(2)} + \varepsilon_t, \quad t \in \mathbb{Z}$$

where $\{\varepsilon_t\}$ is white noise and $\{X_t^{(2)}\}$ is stationary and uncorrelated with $\{\varepsilon_t\}$ at all lags

- (a) Calculate the correlation between $\{X_t^{(1)}\}$ and $\{X_t^{(2)}\}$ at all lags.
- (b) Calculate the cross spectrum, and determine the amplitude (absolute value) and phase (argument) of the cross-spectrum.

Exercise 9.3

For $\mathbf{Y}_t = \begin{pmatrix} Y_t^{(1)} \\ Y_t^{(2)} \end{pmatrix} \sim N(\mathbf{0}, \boldsymbol{\Sigma})$ independently in t with $\boldsymbol{\Sigma} = \begin{pmatrix} \sigma_{11} & \sigma_{12} \\ \sigma_{21} & \sigma_{22} \end{pmatrix}$, determine the expectation and variance of $\hat{\gamma}_\tau^{(1,2)}$ in

$$\hat{\boldsymbol{\Gamma}}_\tau = \begin{bmatrix} \hat{\gamma}_\tau^{(1,1)} & \hat{\gamma}_\tau^{(1,2)} \\ \hat{\gamma}_\tau^{(2,1)} & \hat{\gamma}_\tau^{(2,2)} \end{bmatrix} = \frac{1}{N} \sum_{t=1}^{N-|\tau|} \mathbf{Y}_{t+\tau} \mathbf{Y}_t^T$$