

Time Series Exercise Sheet 6

Sofia Olhede

March 27, 2025

Exercise 6.1

Let $g \in L^1$, have Fourier transform denoted by \mathcal{G} . Prove the following relations (where \mathcal{H} is taken to be the Fourier transform of h).

1. If $h(t) = g(t)^*$ for all $t \in \mathbb{R}$ then

$$\mathcal{H}(f) = \mathcal{G}(-f)^*$$

for all $f \in \mathbb{R}$.

2. If $h(t) = g(\alpha t)$ for all $t \in \mathbb{R}$ then

$$\mathcal{H}(f) = \mathcal{G}(f/\alpha)/|\alpha|$$

for all $f \in \mathbb{R}$.

3. If $h(t) = g(t + \tau)$ for all $t \in \mathbb{R}$ then

$$\mathcal{H}(f) = \mathcal{G}(f)e^{2\pi if\tau}$$

for all $f \in \mathbb{R}$.

4. Let $p \in L^1$ with Fourier transform \mathcal{P} . If $h(t) = \alpha g(t) + p(t)$ for all $t \in \mathbb{R}$ then

$$\mathcal{H}(f) = \alpha \mathcal{G}(f) + \mathcal{P}(f)$$

for all $f \in \mathbb{R}$.

Exercise 6.2

Prove the continuous time version of the convolution theorem, i.e. let $h, g \in L^1$, and let $u = g * h$, then

$$\mathcal{U} = \mathcal{G} \cdot \mathcal{H}.$$

Exercise 6.3

Prove the following theorem. Consider a continuous function $g \in L^1$. Then writing \mathcal{G} for its Fourier transform and G for the Fourier transform of the sequence $\{g(t)\}_{t \in \Delta\mathbb{Z}}$ and assuming that $\mathcal{G} \in L^1$ we have

$$G(f) = \sum_{k \in \mathbb{Z}} \mathcal{G}(f + k/\Delta). \tag{1}$$