

Time Series Exercise Sheet 2

Sofia Olhede

February 27, 2025

Exercise 2.1

When we defined the MA(q) process we specified $\theta_0 = -1$. In terms of the covariance structure for moving average processes, why do we not gain more generality by letting θ_0 be an arbitrary number?

Exercise 2.2

Determine that the moving average process defined by

$$X_t = \varepsilon_t - \theta \varepsilon_{t-1}$$

can be written as

$$X_t = \varepsilon_t - \sum_{j=1}^p \theta^j X_{t-j} - \theta^{p+1} \varepsilon_{t-p-1}$$

for any positive integer value of p .

Exercise 2.3

Assume that $Y_t = \sum_{s=-p}^p g_{s-t} \varepsilon_s$ and $Z_t = \sum_{s=-p}^p h_{s-t} \varepsilon_s$ where ε_t is zero-mean white noise. We define X_t pointwise by $Y_t + Z_t$. Determine the first and second moments of X_t .

Exercise 2.4

In the lectures we defined two different estimators for the ACVS:

$$\begin{aligned} \tilde{\gamma}_\tau &= \frac{1}{n - |\tau|} \sum_{t=1}^{n-|\tau|} \{X_t - \bar{X}\} \{X_{t+|\tau|} - \bar{X}\}, \\ \hat{\gamma}_\tau &= \frac{1}{n} \sum_{t=1}^{n-|\tau|} \{X_t - \bar{X}\} \{X_{t+|\tau|} - \bar{X}\}. \end{aligned}$$

If X_t has independent Gaussian realizations at each time point please calculate the mean, variance and mean-square error of these estimators. Repeat the calculation for an MA(1) process. As in class to do the analysis replace \bar{X} by $\mu = E(X_t)$, arguing that for large samples this will be appropriate.

(Hint): There is a known result (Isserlis' theorem) that if $\mathbf{X} = (X_1, X_2, X_3, X_4)$ is a multivariate normal random vector, then:

$$E[X_1 X_2 X_3 X_4] = E[X_1 X_2] E[X_3 X_4] + E[X_1 X_3] E[X_2 X_4] + E[X_1 X_4] E[X_2 X_3].$$

Exercise 2.5

Assume we know the mean of X_t and it is μ . Form the estimator

$$\bar{\gamma}_\tau^{(\alpha)} = \alpha \tilde{\gamma}_\tau + (1 - \alpha) \hat{\gamma}_\tau$$

For X_t Gaussian white noise determine the MSE of $\bar{\gamma}_\tau^{(\alpha)}$. For $\sigma_X^2 = 1$, $\tau = 1$ and $n = 10$ plot it as a function of α . What value of α is appropriate?

Exercise 2.6

Show that for any series $\{x_1, \dots, x_n\}$ the sample autocovariance satisfies $\sum_{|\tau| < n} \hat{\gamma}_\tau = 0$.