

Definition. A group Γ (without topology) is called **residually finite** if for every non-trivial $\gamma \in \Gamma$ there is a homomorphism $f: \Gamma \rightarrow F$ to a finite group F with $f(\gamma) \neq e$.

Exercise 1. Let Γ be a residually finite group.

- (i) Prove that for every finite set $S \subseteq \Gamma$ there is a homomorphism $f: \Gamma \rightarrow F$ to a finite group F which is injective on S .
- (ii) Prove that Γ can be embedded as a subgroup into a compact topological group.
- (iii) If you contemplate your proof of (ii), can you describe *intrinsically* the induced topology obtained on Γ ? That is, try to give a fundamental system (=basis) of neighbourhoods of e in Γ without referring to the compact group that you constructed for (ii).

Exercise 2. Let $A = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$ and $B = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$. Compute $\exp A$, $\exp B$, $\exp A \exp B$ and $\exp(A + B)$.

Hint: the first computations should really be super-easy if you start by looking at X^n for $X = A, B$ in the definition of $\exp X$. For $X = A + B$, you need to be a little bit more organized and use the definition of (the real number) $e = \exp 0$.

Exercise 3. Let $d \in \mathbf{N}$ and let A, B be $d \times d$ -matrices over \mathbf{R} . Give a precise proof of the following statements:

- (i) The series $\exp A$ converges, i.e. the sequence of partial sums converges in the space $\mathbf{M}_d(\mathbf{R})$ of $(d \times d)$ -matrices.
- (ii) If $AB = BA$, then $\exp(A + B) = \exp A \exp B$. In particular, $\exp A$ is invertible for all A .
- (iii) Compute the derivative at $X = 0$ of the map \exp . Make sure first that you understand the domain and range of that map to see what format the derivative has.