

Exercise 1. Let X be a compact (Hausdorff) space and recall that **probability** measures are the normalised, positive measures:

$$\text{Prob}(X) = \{\mu \in C(X)': \mu(1_X) = 1, \mu \geq 0\}.$$

- (i) Give all the details of the proof that $\text{Prob}(X)$ is weak-* compact.
- (ii) Prove that the unit sphere in $C(X)'$ is, in general, not weak-* compact.

Hints. For (ii), you can choose e.g. $X = [0, 1]$ or $X = \{0, 1\}^{\mathbb{N}}$ or whatever is easiest for you. But you cannot choose $X = \{0, 1\}$; why?

Exercise 2. Let V be a Hilbert space; you can take $V = \ell^2(\mathbb{N})$ if you like.

Prove that the weak and norm topology agree on the unit sphere $S \subseteq V$. First, give an example where this fails for the unit ball of V .

Hints. In $V = \ell^2(\mathbb{N})$, let $\delta_n \in V$ be the sequence which is 1 at n and 0 otherwise. Consider the sequence (of sequences!) $\{\delta_n\}_{n \in \mathbb{N}}$. Meditate why the first and second part of the exercise do not contradict each other.

Exercise 3. Consider the following topological group G . As a space, $G = \mathbf{R} \times \mathbf{R}_{>0}$ with the usual topology. The group operation is

$$(a, b)(a', b') = (a + ba', bb').$$

(This is an example of a **semidirect product** and is usually denoted by $\mathbf{R} \rtimes \mathbf{R}_{>0}$.)

(i) Check that there are embeddings of \mathbf{R} (additive) and $\mathbf{R}_{>0}$ (multiplicative) into G . There is also a quotient homomorphism $G \rightarrow \mathbf{R}_{>0}$. All this becomes even easier if you realize that G is isomorphic to a certain subgroup of $\text{GL}_2(\mathbf{R})$.

- (ii) Give an explicit formula for a (non-zero) invariant measure on the multiplicative group $\mathbf{R}_{>0}$.
- (iii) Find a (non-zero) left invariant measure on G . Is your measure right invariant?

Hints. For (iii), we really want an explicit formula that associates a number to any given $f \in C_c(G)$ given in the coordinates (a, b) ; use part (ii). Then, just compute your formula for any $f \in C_c(G)$ and then for a right translate of f . You can take f as super-simple as you want (just not $f = 0$).