

Exercise 1. Make sure that you remember (or learn) the definition of a **totally bounded** metric space: for every $\epsilon > 0$, the space can be covered by finitely many balls of radius ϵ .

Let p be a prime number and consider the p -adic distance defined last week.

- (i) Prove that \mathbf{Z} is totally bounded.
- (ii) Prove that \mathbf{Z} is not complete.

Explain why this implies that the completion of \mathbf{Z} is compact. This completion is denoted by \mathbf{Z}_p and called the **p -adic integers**.

Exercise 2. Let $\mathcal{G} = (V, E)$ be a **simple graph**, which means that V is a set (the “vertices”) and $E \subseteq V \times V$ is a symmetric subset not meeting the diagonal (the “oriented edges”). A bijection of V is an **automorphism** of this graph if the induced map on V^2 preserves E . Thus the automorphism group $\text{Aut}(\mathcal{G})$ is a subgroup of the group of bijections $\text{Bij}(V)$ and therefore we can endow it with the topology of pointwise convergence.

- (i) To develop some intuition, draw a connected locally finite graph for which $\text{Aut}(\mathcal{G})$ is non-discrete (there is a trivial example if you don’t impose connectedness...).
- (ii) Check that $\text{Aut}(\mathcal{G})$ is a closed subgroup of $\text{Bij}(V)$ and verify by an example that it is in general not open.
- (iii) Suppose that \mathcal{G} is connected and **locally finite**: every vertex belongs to finitely many edges. Prove that $\text{Aut}(\mathcal{G})$ is locally compact.
- (iv) For \mathcal{G} locally finite, verify that $\text{Aut}(\mathcal{G})$ is 0-dimensional (without using the theorem about totally disconnected compact spaces).