

Exercise 1. Let G be a Hausdorff topological group and $H < G$ a subgroup (not necessarily normal). Verify carefully that the quotient topology on the set G/H is Hausdorff iff H is closed in G .

Exercise 2. (i) Guess, and then prove, a complete classification of all *closed* subgroups of \mathbf{R} .
(ii) Same questions for \mathbf{R}/\mathbf{Z} . You can, but don't have to, use part (i).
(iii) How about \mathbf{R}^2 ?

Exercise 3. Fix a prime number p . The **p -adic valuation** $\nu_p(n)$ of an integer $n \neq 0$ is the largest power of p that divides n : thus for instance $\nu_p(p^k) = k$ when $k \in \mathbf{N}$. This extends to a map $\nu_p: \mathbf{Q}^* \rightarrow \mathbf{Z}$ by the formula $\nu_p(a/b) = \nu_p(a) - \nu_p(b)$. (Why is it well-defined?) Finally, the **p -adic absolute value** $|\cdot|_p$ is defined on \mathbf{Q} by $|x|_p = p^{-\nu_p(x)}$ if $x \neq 0$ and $|0|_p = 0$.

- (i) Verify that $d_p(x, y) = |x - y|_p$ is a distance function on \mathbf{Q} .
- (ii) Prove that $(\mathbf{Q}, +)$ is a topological group for the topology defined by the distance d_p .
- (iii) Prove that (\mathbf{Q}^*, \cdot) is a topological group for the same (induced) topology.
- (iv) Is the subgroup $\mathbf{Z} < \mathbf{Q}$ closed? Is it discrete?