
EXERCISES FOR RANDOMIZATION AND CAUSATION (MATH-336)

Exercise Sheet 4

Exercise 1 (Balancing property of propensity scores). (from [1]) Let A = 0, 1 be a binary
treatment variable, L be a discrete baseline covariate and Y = 0, 1 be a binary outcome
variable. The propensity score is defined as π(L) := P (A = 1 | L). Prove that
(a) P (A = 1 | π(L), L) = π(L) .
(b) P (A = 1 | π(L)) = π(L) and thus deduce that A ⊥⊥ L | π(L) .

Solution:
(a) The event defined by {L = l, π(L) = π(l)} is identical1 to the event {L = l} for all l,

and therefore we can remove π(L) from the conditioning set. Note that the converse is
not true, that is, the event {L = l, π(L) = π(l)} is not equal to {π(L) = π(l)} for all l,
because π(L) may not be a bijective function of L.

(b) We start by noticing that P (A = 1 | π(L)) = E[A | π(L)]. Next, we have from the law
of total expectation that E[A] = E[E[A | L]]. When we further condition on π(L), then
E[A | π(L)] = E{E[A | L, π(L)] | π(L)}, which allows us to write

P (A = 1 | π(L)) = E[A | π(L)]
= E{ E[A | L, π(L)]︸ ︷︷ ︸

=P (A=1|π(L),L)(a)=π(L)

| π(L)}

= E{π(L) | π(L)}
= π(L) .

From (a) and (b), we have the equality π(L) = P (A = 1 | π(L), L) = P (A = 1 | π(L)),
which allows us to conclude that A ⊥⊥ L | π(L).

Exercise 2 (Propensity scores). Let A, Y denote treatment and outcome respectively. Fur-
thermore, let L be a set of baseline covariates (a common cause of A and Y ) and denote by
π(L) the propensity score P (A = 1 | L), a deterministic function of L.
(i) Assume that A,L, Y satisfy the causal model G:

AL Y

G

Draw the causal DAG G? containing nodes A,L, π(L), Y which satisfies A ⊥⊥ L | π(L)
(a fact about π(L) which we proved in Exercise 1).

1To see this more formally, suppose we have a probability space (Ω,A,P). We then have that {ω ∈ Ω :
L(ω) = l, π ◦ L(ω) = π(l)} = {ω ∈ Ω : L(ω) = l} for all l.
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(ii) By drawing the SWIG G?(a) and using the rules of d-separation, show that

Y a ⊥⊥ A | π(L) whenever Y a ⊥⊥ A | L .

In other words, we want to show that the propensity score is sufficient to adjust for
confounding whenever L is sufficient to adjust for confounding.

Solution:
(i) The desired graph is

AL π(L) Y

G?(a)

The node π(L) must lie on the path L → A because π(L) is a descendant of L and
A ⊥⊥ L | π(L).

(ii) The desired SWIG is

A aL π(L) Y a

G?(a)

Let G = {Gi : (Y a ⊥⊥ A | L)Gi(a)} be the set of causal models satisfying conditional
exchangeability.2 By definition, every Gi ∈ G has in common that the path (A ←
· · · ← π(L) ← L → · · · → Y a)Gi

is closed by conditioning on L. Because π(L) always
intersects the path (L→ · · · → A)Gi

, we can therefore block this path for all Gi ∈ G by
conditioning on π(L), and thus Y a ⊥⊥ A | π(L) whenever Y a ⊥⊥ A | L.

Exercise 3 (SWIGS and independencies). (from Robins’ EPI 207, Homework 2 [2])
(a) Given the graph in Fig. 1, draw SWIGs corresponding to

(i) Intervening on A0 alone,
(ii) Intervening on A1 alone,
(iii) Intervening on both A0, A1.

2The causal model G? is an example of a model satisfying Y a ⊥⊥ A | L (i.e. G? ∈ G) because the path
(A← π(L)← L→ Y a)G? is closed by conditioning on L.

Examples of other causal models where Y a ⊥⊥ A | L is not satisfied include the following:

A aL π(L) Y a

U

A aL π(L) Y a

U1

U2
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Figure 1

(b) Use your SWIGs from part (a) to determine whether the following statements are true
or false and explain why:
(i) Y a0 ⊥⊥ A0

(ii) Y a0 ⊥⊥ A0 | La01
(iii) Y a1 ⊥⊥ A0

(iv) Y a1 ⊥⊥ A1

(v) Y a1 ⊥⊥ A1 | L1, A0

(vi) Y a1 ⊥⊥ A1 | A0

(vii) Y a0,a1 ⊥⊥ A0

(viii) Y a0,a1 ⊥⊥ Aa01
(ix) Y a0,a1 ⊥⊥ Aa01 | La01 , A0

(x) Y a0,a1 ⊥⊥ Aa01 | A0

(xi) La01 = L1

(xii) Aa01 = A1

Solution:
(a) The desired SWIGS are shown in Fig. 2.
(b) (i) True. There are no arrows into or out of A0 in the SWIG, so it is d-separated from

every other node.
(ii) True. There are no arrows into or out of A0 in the SWIG, so it is d-separated from

every other node, whether or not we condition on La01 .
(iii) False. The path A0 → Y a1 is an open directed path from A0 to Y a1 .
(iv) False. A1 ← U1 ← A0 → Y a1 is an open directed path from A1 to Y a1 .
(v) False. Conditioning on L1 unblocks the path A1 ← U1 → L1 ← U0 → Y a1 .
(vi) True. Conditioning on A0 blocks all paths through it and all paths through L1 are

blocked because it is a collider.
(vii) True. There are no arrows into or out of A0 in the SWIG so it is d-separated from

every other node.
(viii) True. All paths from Aa01 to Y a0,a1 are blocked by either the intervention at A0 or

the collider at La01 .
(ix) False. The path Aa01 ← Ua0

1 → La01 ← U0 → Y a0,a1 from Aa01 to Y a0,a1 is unblocked
by conditioning on La01 .
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Figure 2. Showing the SWIGs in (a) (i)-(iii)

(x) True. All paths from Aa01 to Y a0,a1 are blocked by either the intervention at A0 or
the collider at La01 .

(xi) False. There is an arrow directly from a0 to La01 .
(xii) False. a0 → Ua0

1 → Aa01 is an open path from a0 to Aa01 .

Exercise 4 (Evaluating the causal assumptions). Consider again the study investigating
whether GRE test scores can be used to predict future performance [3], discussed in Exercise
Sheet 3. As suggested at the end of the exercise solution, suppose we conduct a modified
version of the original study where all applicants to graduate school are admitted regardless
of their GRE score. We will now consider whether the contrast E[Y | G = 1]−E[Y | G = 0]
can be interpreted as a causal effect.
(a) State the identification conditions required for the following equality to hold

E[Y g] = E[Y | G = g] .
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(b) Evaluate whether the assumptions hold in this study.
(c) Deduce whether the contrast E[Y | G = 1] − E[Y | G = 0] 6= E[Y g=1 − Y g=0] can be

interpreted as a causal effect.

Solution:
(a) • Consistency

• Exchangeability: Y g ⊥⊥ G
• Positivity: P (G = g) > 0 for all g ∈ {0, 1}.

(b) • Consistency holds, that is, the intervention on GRE test score is well-defined. For
example changing the numerical value of the GRE score given to the admissions
officers (in other words, an intervention on GRE test score can be thought of as
cheating on the test, without changing the candidates underlying skills). By con-
trast, an intervention on A1 would not be well-defined, because it is not clear how
to change skill set A1 without altering skill set A2.
• Exchangeability: Y g 6⊥⊥ G because there is an open path G← A1 → Y g. Intuitively,
GRE is associated with performance due to the common cause A1 of GRE scores
and Y g, and an intervention on GRE test score (changing the score displayed to
admission officers) does not affect the candidates future performance, given that all
candidates are admitted regardless of GRE score.
• Positivity can be checked in the data, and would be expected to hold in this case.

(c) We deduce that E[Y | G = 1]−E[Y | G = 0] 6= E[Y g=1−Y g=0] because exchangeability
fails, and thus the contrast on LHS cannot be interpreted as a causal effect.
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