EXERCISES FOR RANDOMIZATION AND CAUSATION (MATH-336)

Exercise 1 (DAGs and independencies). (from Robins’ EPI 207 [I])

A

(a) Write down the Markov factorization for:
(i) p(a,b,c) in DAG (A),
(ii) p(a,b,c,d, e, f) in DAG (B).
(b) Now imagine that DAGs (A) and (B) were complete and were ordered alphabetically.
In other words, A receives no edges; B receives an edge from A; C' receives edges from
A, B etc. Write down the Markov factorizations for:
(i) p(a,b,c) in DAG (A),
(ii) p(a,b,c,d, e, f) in DAG (B).
(¢) By comparing your answers to (a) and (b) factor-by-factor, determine the independencies
implied by each of the DAGs. These are called the defining (conditional) independencies
of the DAG.

Solution:

(a) The Markov factorizations are given by
(i) p(a,b,c) = p(c|a,b)p(b)p(a),
(ii) p(a,b,c,d,e, f) = p(f | c)p(e | d)p(d | b, c)p(c)p(b | a)p(a).
(b) The Markov factorizations are given by
(a) p(a,b,c) =p(c|b,a)p(b|a)p(a),
(b) p(a, b,c,de, f) = p(f | a,b,¢,d, e)p(e | a,b,c, d)p(d ’ a, b, c)p(c | a, b)p(b | a)p(a).
(c¢) The defining conditional independencies are given by
e DAG A: B 1 A because p(b | a) = p(b).
e DAG B:
— F 1 (A, B,D,E) | C because p(f | a,b,c,d,e) =p(f]|c).
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— E 1 (A, B,C) | D because p(e | a,b,c,d) = p(e | d).
— D 1 A| B,C because p(d | a,b,c) = p(d | b, c).
— C L (A, B) because p(c | a,b) = p(c).

Exercise 2 (Faithfulness). Suppose a law P is faithful to a DAG G. In the following you
are given a complete list of independencies for the random variables involved. Find all the
graphs G that satisfy the conditions

(a) X L Z for variables (X,Y, 7).
(b) X 1L Y|Z for variables (X,Y, 7).
(c) X LY,

X 1LwW|Z,

X LW|ZY,

Y L W|Z,

Y LW|Z. X,

for variables (X,Y, Z, W).

Solution:
(a) The unique solution is the following graph:

X > Y < A

Note that X and Z are d-separated by the empty set. If we remove any of the edges in
the graph, new indepenencies will be implied (which would violate the assumption that
the list is complete).

(b) All the following graphs satisfy the conditions:

X > / > Y
X <« 7 <€ Y
X = Z > Y
(c¢) The unique solution is the following graph:
X Y
N ¥

A

\/

44

Exercise 3 (Collider paths). The Graduate Record Examinations (GRE), a set of stan-
dardized tests, are commonly used to assess applicants for graduate programs in the United
States. A study was conducted to investigate whether GRE test scores could be used to
predict various performance outcomes among graduate students [2]. For the quantitative
GRE (the mathematics part of the exam), analyses such as Fig. [I| were performed, and the
investigators concluded that the quantitative GRE score is a poor predictor of graduate stu-
dent performance. We will now use causal reasoning to investigate a possible reason for this
finding.

Denote the quantitative GRE test score by G, performance outcome (for example time
to first author publication count) by Y and admission decision to graduate school by D.

Furthermore, denote a person’s quantitative skills by A;, and denote other factors of success
2



>

101 .
'g 8 e )
g‘ . - . . . l’. ., =
= e%e0 s 0 Qg e ttanstts o
2 6 .—-.J—'-.:_:.;.L..'.;.H..!.;...,_;” 2T
E sw ® a. ;3'!'3 g e ;.l[i!
8 4 - ¥ :c' : :‘E.‘ :: "
2 -
g 2
-
0 L] L} 1
500 600 700 800
GRE Quantitative Score
B
124 .
E 10+ . .
g . . .
(%] 8+ . s . . sss s .
g - L - . - LR B -
% 6- - - - LU L B LU L L
E - - LU B B B LN
% 4 s 22 T
& 5| 5 a5 i s BeRamviee
0 T T 1
500 600 700 800
GRE Quantitative Score
c
g 64 . . . . .
[=]
u - - -
=
2
E 4- - - - - L L L
2
2 b @4 § EE ERF ¢ GGGES
=
o
% 2— - - IR R N NN NN NN . .
-
< L B B B BB B BB B B B B B BB B B N )
£
T8 0 T T 1
500 600 700 800
GRE Quantitative Score

FIGURE 1. Association between performance outcomes in graduate school and
and GRE test scores. Non-significant (P > 0.05) correlation coefficients were
observed. Reproduced from [2].



(for example scientific creativity, or prior engagement in the area of research interest) by the
variable Ay. The estimands studied in Fig. [I] are on the form

E[Y |G, D=1].

Suppose that a PhD student’s performance is described by the following structural equa-
tions{]

Y = fy (A1, Ay, D, Uy)
D = fp(G, Ay, Up)
G = fa(A1,Ug)
Ar = fa,(Ua,)
Ay = fa,(Ua,) -
Assume that the error terms Uy, Ug, Up,Ua,, Ua, are mutually independent, and thus we

have defined a NPSEM-IE.
Answer the following:

(a) Draw the causal DAG corresponding to the above structural equation system.
(b) Determine whether the following independencies hold in the DAG you created in (a):
(i) G L A,
(ii) G L Ay | D
(c) Suppose we discretize G and Y into binary categories such that G € {0,1} (0 = lower
test score, 1 = higher test score) and Y € {0,1} (0 = weaker performance, 1 = stronger
performance). Use the answer to part (b) to give a story, using causal arguments, why

ElY|G=1,D=1-EY|G=0,D=1]~0.
Solution:

(a) The causal DAG is given below (as usual, we omit the error terms to avoid clutter):

mii::::::\\\\

(b) (i) G L Ay because there is no open path from G to Ay (the path G <+~ A; =Y « A,
is blocked by the collider Y and G — D < A is blocked by the collider D).
(i) G L Ay | D because conditioning on D opens the collider path G — D < As.
(c¢) The fact that A; £ Ay | D can be written as

ElA|G=1,D=1]#E[A |G=0,D=1] .
IThis is not an entirely realistic assumption. We will return to the problem of evaluating such an assump-

tion formally in a later exercise.
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This tells us that the strata {G = 1,D = 1} and {G = 0,D = 1} contain individuals
with different Ay. In particular, it is conceivable that individuals admitted to graduate
school with lower GRE scores, i.e. {G =0, D = 1}, excel in other areas which have been
recognized in the admission process. Conversely, admitted individuals with high GRE
scores, i.e. {G = 1,D = 1}, may be weaker with regards to the factors A, than those
admitted with low GRE scores. In words, low G implies high A, and vice versa when
conditioning on D = 1. However, we saw that G and A, were marginally independent
in (b)-(i).

Thus we can conclude that admitted candidates are either strong in A; or in Ay (or
both). Assuming that abilities A; and A, are of similar importance for performance
outcomes Y, we then have that

EY|G=1,D=1~E[Y|G=0D=1].

Therefore, the predictive power of GRE scores on performance outcomes may be ob-
scured by the presence of other independent factors for success in graduate school. A
more informative way of assessing the predictive power of GRE scores would be to con-
duct an experiment where all applicants are admitted to graduate school, and then
evaluate F|Y | G = 1] — E[Y | G = 0] in this population, but this is clearly impractical.

Exercise 4 (Yellow fingers and lung cancer). Consider the following structural equation
systems for treatment A, outcome Y and covariates L, all assumed to be binary with mutually
error terms, Uy L Uy, 1L Uy (this defines an NPSEM-IE causal model):

(a) Suppose that

Y = fy(AUy),
A= fa(Uy) .

(i) Draw the causal graph for the above causal model.
(ii) Compute the observed law P(A = a,Y = y) given that

fY(A’UY):A‘I<UY§§>+(1—A)~]<Uy§§> ,

faUa) =1 (UA < %) 7

with Uy, Uy being i.i.d. uniform random variables on [0, 1].
(iii) Using the observed law, compute E[Y | A=1] - E[Y | A=0].
(iv) Does A cause Y in this model?

(b) Suppose that

Y = fy(L,Uy) ,
A= fa(L,Uy) ,
L= fu(Us).

(i) Draw the causal graph for the above causal model.
(ii) Compute the observed law P(A = a,Y = y) given that

fY(L’UY):L'I(UYS2>+(1—L)~I<Uy§i> ,



fA(L,UA):L-I(UAgz)+(1—L)-I(UA§%1> ,

EJMJ:IG&S%),

with Uy, Uy, UL, being i.i.d. uniform random variables on [0, 1].

(iii) Using the observed law, compute E[Y | A=1]— E[Y | A=0].

(iv) Does A cause Y in this model?

(v) Suppose that A had actually been randomized in the observed data (assume that
the value of A was assigned by flipping an unbiased coin). How would the structural
equations and causal graph in part (b) change?

(c) Deduce that the observed law of P(A = a,Y = y) does not correspond to a single
structural equation model. Thus, knowledge of P(A = a,Y = y) is insufficient to
determine whether A causes Y

(d) An investigator wants to conduct an experiment to test whether having yellow fingers
causes lung cancer. To do so, she stops 10 individuals with yellow fingers and 10 individ-
uals without yellow fingers on the street. Then, she asks them whether or not they have
been diagnosed with lung cancer. She finds that 2/10 individuals with yellow fingers
have lung cancer, versus 1/10 individuals without yellow fingers.

(i) Using your answers to part (a) and (b), suggest a causal story (draw a graph, define
the nodes) which explains the relationship between smoking, yellow fingers and lung
cancer (you can assume that smoking causes both yellow fingers and lung cancer).

(ii) Based on the graph, can we conclude from the observation in (c) that yellow fingers
cause lung cancer? There is no need to perform any computations at this point: a
full argument with counterfactuals will be the subject of a later question.

(iii) Would your answer to (c)-(ii) change if the numbers were different: 100 000 with
with lung cancer amongst 1 000 000 persons without yellow fingers versus 200 000
with lung cancer amongst 1 000 000 persons with yellow fingers?

Solution:
(a) (i) The causal graph is as follows:

A—>Y

(ii) The observed law is given by

5

P(A=0Y =0)= —
( 07 O) 16’
PA=0,Y =1) = >
IR AT

3

PA=1Y =0)= —
(a=1v=0=2
PA=1Y=1)= .
16

(iii) Using (a)-(ii), we get that E[Y | A=1] - E[Y | A=0] = 1.

2This observation is frequently described by the aphorism ’correlation is not equal to causation’.
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(iv) In this causal model, A causes Y because there is a causal path (a directed path,
i.e. a path where all edges follow the same direction) from A to Y in the graph.
(b) (i) The causal graph is as follows:

L——> A Y

~_ 7

(ii) The law is the same as the one found in (a)-(ii).

(iii) The contrast of expectations is the same as in (a)-(iii).

(iv) In this model, A does not cause Y because there is no causal path from A to Y.
v) If A was randomized, it would no longer be affected by the value of L. Thus,

Y = fy(L,Uy),
A= fa(Ua) ,
L= fi(Up).

and the corresponding causal graph would be:

L A Y

~_ 7

(c¢) Two different causal models can give the same observed distribution of A and Y, as seen
in parts (a) and (b). In the former, A causes Y whereas in the latter, A does not cause
Y. Therefore, it is necessary to specify a causal model (this can be done equivalently
through structural equations and graphs) for the relationship between A and Y in order
to decide whether A causes Y, i.e. whether an intervention on A would lead to a change
inY.
(d) (i) Smoking is a common cause of yellow fingers and lung cancer. This scenario is
described by the structural equations and DAG in part (b), taking L to be smoking,
A to be yellow fingers and Y to be lung cancer. Amongst smokers, there is an
increased proportion of individuals with yellow fingers compared to non-smokers.
Likewise, there is an increased proportion of individuals with lung cancer amongst
smokers as compared to non-smokers. This creates an association between yellow
fingers and lung cancer, even though yellow fingers does not in itself cause lung
cancer.

(ii) The observed association between yellow fingers and lung cancer is likely due to
confounding by smoking. Taking the observed contrast E[Y | A =1]—F[A| A= 0]
as a measure of the causal effect of yellow fingers on lung cancer would therefore
lead to a causal error. Moreover, we expect to see statistical error from random
variability in the sample, because it is of small size (n = 10).

(iii) The new numbers would reduce the statistical error, but not the causal error.
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