

EXERCISES FOR RANDOMIZATION AND CAUSATION (MATH-336)

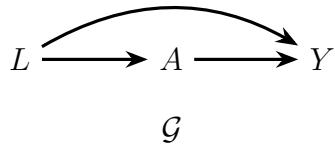
EXERCISE SHEET 4

Exercise 1 (Balancing property of propensity scores). (from [1]) Let $A = 0, 1$ be a binary treatment variable, L be a discrete baseline covariate and $Y = 0, 1$ be a binary outcome variable. The propensity score is defined as $\pi(L) := P(A = 1 | L)$. Prove that

- (a) $P(A = 1 | \pi(L), L) = \pi(L)$.
- (b) $P(A = 1 | \pi(L)) = \pi(L)$ and thus deduce that $A \perp\!\!\!\perp L | \pi(L)$.

Exercise 2 (Propensity scores). Let A, Y denote treatment and outcome respectively. Furthermore, let L be a set of baseline covariates (a common cause of A and Y) and denote by $\pi(L)$ the propensity score $P(A = 1 | L)$, a deterministic function of L .

- (i) Assume that A, L, Y satisfy the causal model \mathcal{G} :



Draw the causal DAG \mathcal{G}^* containing nodes $A, L, \pi(L), Y$ which satisfies $A \perp\!\!\!\perp L | \pi(L)$ (a fact about $\pi(L)$ which we proved in Exercise 1).

- (ii) By drawing the SWIG $\mathcal{G}^*(a)$ and using the rules of d -separation, show that

$$Y^a \perp\!\!\!\perp A | \pi(L) \quad \text{whenever} \quad Y^a \perp\!\!\!\perp A | L .$$

In other words, we want to show that the propensity score is sufficient to adjust for confounding whenever L is sufficient to adjust for confounding.

Exercise 3 (SWIGS and independencies). (from Robins' EPI 207, Homework 2 [2])

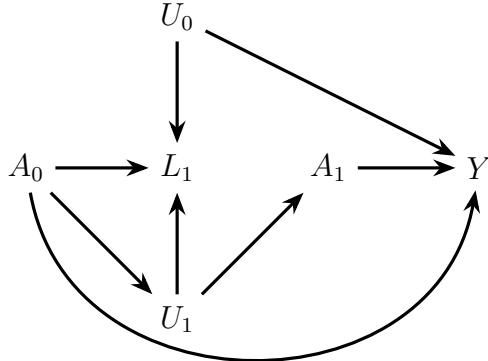


FIGURE 1

(a) Given the graph in Fig. 1, draw SWIGs corresponding to

- (i) Intervening on A_0 alone,
- (ii) Intervening on A_1 alone,
- (iii) Intervening on both A_0, A_1 .

(b) Use your SWIGs from part (a) to determine whether the following statements are true or false and explain why:

- (i) $Y^{a_0} \perp\!\!\!\perp A_0$
- (ii) $Y^{a_0} \perp\!\!\!\perp A_0 \mid L_1^{a_0}$
- (iii) $Y^{a_1} \perp\!\!\!\perp A_0$
- (iv) $Y^{a_1} \perp\!\!\!\perp A_1$
- (v) $Y^{a_1} \perp\!\!\!\perp A_1 \mid L_1, A_0$
- (vi) $Y^{a_1} \perp\!\!\!\perp A_1 \mid A_0$
- (vii) $Y^{a_0, a_1} \perp\!\!\!\perp A_0$
- (viii) $Y^{a_0, a_1} \perp\!\!\!\perp A_1^{a_0}$
- (ix) $Y^{a_0, a_1} \perp\!\!\!\perp A_1^{a_0} \mid L_1^{a_0}, A_0$
- (x) $Y^{a_0, a_1} \perp\!\!\!\perp A_1^{a_0} \mid A_0$
- (xi) $L_1^{a_0} = L_1$
- (xii) $A_1^{a_0} = A_1$

Exercise 4 (Evaluating the causal assumptions). Consider again the study investigating whether GRE test scores can be used to predict future performance [3], discussed in Exercise Sheet 3. As suggested at the end of the exercise solution, suppose we conduct a modified version of the original study where all applicants to graduate school are admitted regardless of their GRE score. We will now consider whether the contrast $E[Y \mid G = 1] - E[Y \mid G = 0]$ can be interpreted as a causal effect.

(a) State the identification conditions required for the following equality to hold

$$E[Y^g] = E[Y \mid G = g].$$

(b) Evaluate whether the assumptions hold in this study.
 (c) Deduce whether the contrast $E[Y \mid G = 1] - E[Y \mid G = 0] \neq E[Y^{g=1} - Y^{g=0}]$ can be interpreted as a causal effect.

REFERENCES

- [1] Proving the balancing score property of propensity score.
- [2] J. M. Robins. EPI 207 (Harvard T.H. Chan School of Public Health).
- [3] Liane Moneta-Koehler, Abigail M. Brown, Kimberly A. Petrie, Brent J. Evans, and Roger Chalkley. The Limitations of the GRE in Predicting Success in Biomedical Graduate School. *PLOS ONE*, 12(1):e0166742, January 2017. Publisher: Public Library of Science.