
EXERCISES FOR RANDOMIZATION AND CAUSATION (MATH-336)

Exercise Sheet 6

Exercise 1 (Censoring). Consider the DAG and SWIG below, reproduced from the lectures.
Let A,C, Y ∈ {0, 1} be indicators of treatment, loss to follow-up and outcome respectively.

A C

L

Y
A a Ca c = 0

L

Y a,c=0

(a) Give one English sentence that explains the interpretation of E[Y a,c=0]. Can we identify
E[Y a,c=1] from the observed data distributions?

(b) Write down the positivity and conditional exchangeability assumption required to iden-
tify E[Y a,c=0].

(c) Find an identification formula for E[Y a,c=0].

Exercise 2 (Imperfect adherence). Consider a randomized trial where patients are assigned
to one of two treatments R ∈ {0, 1} by randomization (flipping an unbiased coin) but do
not necessarily adhere to their assigned treatment, such that their observed treatment level
A ∈ {0, 1} may differ from R. Let L be a baseline covariate and let Y be the outcome.
Suppose that all variables are binary, and assume that the causal model in the DAG and
corresponding SWIG below are valid.

R A

L

Y A a

L

Y aR

(a) (i) Write down an estimand for the per protocol effect (causal effect of A on Y ). Write
down the exchangeability conditions which allow us to identify the per protocol
effect in a study with imperfect adherence.

(ii) Find an identification formula for this causal effect.
(b) (i) Write down an estimand for the intention-to-treat effect (the causal effect of R

on Y ). Write down the positivity and conditional exchangeability conditions which
allow us to identify the intention-to-treat effect in a study with imperfect adherence
(here, we assume no censoring)? Compare this to your answer in part (a)-(i)

1



(ii) Find an identification formula for this causal effect.
Next, we will consider a setting with imperfect adherence and losses to follow-up, depicted
in the DAG below:

R A

L

C Y

G

(c) Write down the estimand for the causal effect of A on Y if we were to intervene to
eliminate loss to follow-up, and draw the SWIG corresponding to this estimand. Write
down the positivity and conditional exchangeability conditions which allow us to identify
this estimand, and find an identification formula for this estimand.

Exercise 3 (Identification with hidden variables). Consider another example of a sequen-
tially randomized experiments, where the following measured variables are temporally (and
topologically) ordered from left to right ⟨A0, L, A1, Y ⟩, and any variable can depend on any
other variable measured in its past.1

A0 A1

L

Y

Gc

A0 A1

L

Y
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L

Y

H1 H2

GH1,H2

(a) Draw the SWIG Gc(a0, a1). By assessing the conditional exchangeability assumptions
for every path between treatments A0, A

a0
1 and outcome Y a0,a1 , convince yourself that

Gc(a0, a1) satisfies the conditional exchangeability conditions

Y a0,a1 ⊥⊥ A0 ,

Y a0,a1 ⊥⊥ Aa0
1 | A0, L

a0 .

1The motivation in this question is to show that we can identify causal effects in the presence of unmeasured
variables. This follows straightforwardly from the identification theorem, which says that causal estimands
are equal to the g-formula under certain conditions (positivity, conditional exchangeability and consistency).
The idea is to check this manually in two special cases without using the identification theorem. As you can
see, even these simple cases require some uses of algebra and independencies.
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Use these conditions to show that
P (Y a0,a1 = y) =

∑
l

P (y | a0, a1, l)p(l | a0) .(1)

(b) Suppose next that there is a common cause H of L and Y . Draw the SWIG GH(a0, a1).
Convince yourself that it satisfies the conditional exchangeability conditions

Y a0,a1 ⊥⊥ A0 ,

Y a0,a1 ⊥⊥ Aa0
1 | A0, L

a0 , H .

Using these conditions, show that

P (Y a0,a1 = y) =
∑
l

∑
h

P (y | a1, a0, l, h)p(l | a0, h)p(h) .

(c) Draw the SWIG GH1,H2(a0, a1) and convince yourself that it satisfies the conditional
exchangeability conditions

Y a0,a1 ⊥⊥ A0 | H1 ,

Y a0,a1 ⊥⊥ Aa0
1 | A0, L

a0 , H1, H2 .

Using these conditions, show that

P (Y a0,a1 = y) =
∑
l

∑
h1

∑
h2

p(y | a1, a0, l, h1, h2)p(l | h1, h2, a0)p(h1)p(h2) .

(d) By manipulating the conditional probabilities on the RHS of parts (b) and (c), show
that both the right hand sides are equal to Eq. 1. Deduce that it is not necessary to
measure H (or conversely H1 and H2) in order to identify E[Y a0,a1 ].2

Hint: Use the laws of probability and independencies in the graphs GH and GH1,H2 in
order to express RHS on the form

RHS(b) =
∑
l

∑
h

P (y, h | a0, a1, l)p(l | a0)

and
RHS(c) =

∑
l

∑
h1

∑
h2

P (y, h1, h2 | a0, a1, l)p(l | a0)

in order to marginalize out the hidden variables by summing over them.
(e) Do the graphs in (b) and (c) satisfy the exchangeability conditions in part (a) (reproduced

below)?
Y a0,a1 ⊥⊥ A0 ,

Y a0,a1 ⊥⊥ Aa0
1 | A0, L

a0 .

2More broadly, it is not necessary to measure all causes of all variables in a causal model in order to
identify causal effect, if positivity, conditional exchangeability and consistency hold. This is an important
result, which tells us that we can study isolated parts of complex systems without knowing the full causal
structure. In fact, can we ever be certain that we have captured all causes in our causal model?
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