EXERCISES FOR RANDOMIZATION AND CAUSATION (MATH-336)

EXERCISE SHEET 3

Exercise 1 (DAGs and independencies).

(a) Write down the Markov factorization for:
(i) p(a,b,c) in DAG (A),
(ii) p(a,b,c,d, e, f) in DAG (B).
(b) Now imagine that DAGs (A) and (B) were complete and were ordered alphabetically.
In other words, A receives no edges; B receives an edge from A; C' receives edges from
A, B etc. Write down the Markov factorizations for:
(i) plab,c) in DAG (A),
(ii) p(a,b,c,d, e, f) in DAG (B).
(c¢) By comparing your answers to (a) and (b) factor-by-factor, determine the independencies
implied by each of the DAGs. These are called the defining (conditional) independencies
of the DAG.

Exercise 2 (Faithfulness). Suppose a law P is faithful to a DAG G. In the following you
are given a complete list of independecies for the random variables involved. Find all the
graphs G that satisfy the conditions
(a) X L Z for variables (X,Y, 7).
(b) X 1L Y|Z for variables (X,Y, Z).
(c) X LY,

X L w|Z,

X 1LWwW|Z)Y,

Y L W|Z,



Y LWI|Z, X,
for variables (X,Y, Z, W).

Exercise 3 (Collider paths). The Graduate Record Examinations (GRE), a set of stan-
dardized tests, are commonly used to assess applicants for graduate programs in the United
States. A study was conducted to investigate whether GRE test scores could be used to
predict various performance outcomes among graduate students [I]. For the quantitative
GRE (the mathematics part of the exam), analyses such as Fig. |1| were performed, and it
was found that quantitative GRE score is not a very good predictor of graduate student
performance. We will now use causal reasoning to investigate a possible reason for this
finding.

Denote the quantitative GRE test score by G, performance outcome (for example time
to first author publication count) by Y and admission decision to graduate school by D.
Furthermore, denote a person’s quantitative skills by A;, and denote other factors of success
(for example scientific creativity, prior engagement in area of research interest etc) by the
variable Ay. The estimands studied in Fig. [I] are thus of the form

E[Y |G, D=1].

Suppose that a PhD student’s performance is described by the following structural equa-
tions{]

Y = fy(Ay, Ay, D, Uy)
D = fp(G, Ay, Up)

G = fa(A1,Ug)

Ay = fa,(Ua)

Ay = fa,(Ua,) -

Assume that the error terms Uy, Ug, Up,Uga,, Uya, are mutually independent, and thus we
have defined a NPSEM-IE.
Answer the following:

(a) Draw the causal DAG corresponding to the above structural equation system.
(b) Determine whether the following independencies hold in the DAG you created in (a):
(i) G L A,
(ii)) G LAy | D
(c) Suppose we discretize G and Y into binary caterogies such that G € {0,1} (0 = lower
test score, 1 = higher test score) and Y € {0, 1} (0 = weaker performance, 1 = stronger
performance). Use the answer to part (b) to give a story, using causal arguments, why

E[Y|G=1,D=1-E[Y|G=0,D=1~0.

Exercise 4 (Yellow fingers and lung cancer). Consider the following structural equation sys-
tems for treatment A, outcome Y and covariates L, all assumed to be binary with marginally
independent errors Uy 1L Uy I Uy (this defines an NPSEM-IE causal model):

IThis is not an entirely realistic assumption. We will return to the problem of evaluating such an assump-
tion formally in a later exercise.
2



(a) Suppose that
Y = fy(AUy),
A= fa(Uy) .
(i) Draw the causal graph for the above causal model.
(ii) Compute the observed law P(A = a,Y = y) given that

fY(A’UY>:A'I<Uy§g>+(1—A)~I(UY§g> ,

faUa) =1 (UA < %) ;

with Uy, Uy being i.i.d. uniform random variables on [0, 1].
(iii) Using the observed law, compute E[Y | A=1] — E[Y | A=10].
(iv) Does A cause Y in this model?
(b) Suppose that

Y = fy(L,Uy),
A= fa(L,Uy) ,
L= fuUs).

(i) Draw the causal graph for the above causal model.
(ii) Compute the observed law P(A = a,Y = y) given that

E(L,Uy)—L'J(ws%)ﬂl—L)-I(Uygi) ,

fA(L,UA)zL-I(UA§§)+(1—L)-I(UASE) :

R =1(ve<3)

with Uy, Uy, UL, being i.i.d. uniform random variables on [0, 1].

(iii) Using the observed law, compute E[Y | A=1] — E[Y | A=10].

(iv) Does A cause Y in this model?

(v) Suppose that A had actually been randomized in the observed data (assume that
the value of A was assigned by flipping an unbiased coin). How would the structural
equations and causal graph in part (b) change?

(c¢) Deduce that the observed law of P(A = a,Y = y) does not correspond to a single
structural equation model. Thus, knowledge of P(A = a,Y = y) is insufficient to
determine whether A causes Y

(d) An investigator wants to conduct an experiment to test whether having yellow fingers
causes lung cancer. To do so, she stops 10 individuals with yellow fingers and 10 individ-
uals without yellow fingers on the street. Then, she asks them whether or not they have
been diagnosed with lung cancer. She finds that 2/10 individuals with yellow fingers
have lung cancer, versus 1/10 individuals without yellow fingers.

2This observation is frequently described by the aphorism ’correlation is not equal to causation’.
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(i) Using your answers to part (a) and (b), suggest a causal story (draw a graph, define
the nodes) which explains the relationship between smoking, yellow fingers and lung
cancer (you can assume that smoking causes both yellow fingers and lung cancer).

(ii) Based on the graph, can we conclude from the observation in (c) that yellow fingers
cause lung cancer? There is no need to perform any computations at this point: a
full argument with counterfactuals will be the subject of a later question.

(iii) Would your answer to (c)-(ii) change if the numbers were different: 100 000 with
with lung cancer amongst 1 000 000 persons without yellow fingers versus 200 000
with lung cancer amongst 1 000 000 persons with yellow fingers?
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FIGURE 1. Association between performance outcomes in graduate school and
and GRE test scores. Non-significant (P > 0.05) correlation coefficients were
observed. Reproduced from [I].
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