
EXERCISES FOR RANDOMIZATION AND CAUSATION (MATH-336)

Exercise Sheet 12

Exercise 1. In this exercise, you will study partial identification (bounds) of the average
treatment effect. Suppose that Z,A, Y, U satisfy the single-world causal model corresponding
to the graph below. Suppose that the measured variables Z,A, Y ∈ {0, 1} are binary.
(a) Show that, without using Z, the average treatment effect of A and Y satisfies the fol-

lowing inequalities

−P (Y = 0, A = 1)−P (Y = 1, A = 0) ≤ E(Y a=1−Y a=0) ≤ P (Y = 1, A = 1)+P (Y = 0, A = 0).

What is the difference between the upper and the lower bounds (UB − LB)?
(b) Suppose A = 1 if an individual elects to get the annual influenza vaccine and A = 0

otherwise. Let Y a = 1 if an individual subsequently does develop flu-like symptoms
when A = a, and Y a = 0 otherwise. Suppose that the investigator is comfortable with
assuming that each individual is more or as likely to develop flu-like symptoms if they
are unvaccinated versus if they are vaccinated.1
(i) Formalize the investigator’s assumption as a counterfactual inequality.
(ii) What is the upper bound on E(Y a=1 − Y a=0) under this assumption?
(iii) Can we derive a tighter lower bound without adding additional assumptions?

(c) Now you will show some famous bounds using the instrumental variable Z. Suppose that
necessary consistency and positivity assumptions hold. Let p(y, a | z) denote P (Y =
y, A = a | Z = z) and p(y | z) denote P (Y = y | Z = z). Show that

LB ≤ E(Y a=1 − Y a=0) ≤ UB,

where

LB = max{ − p(0, 1 | 0)− p(1, 0 | 0),
− p(0, 1 | 1)− p(1, 0 | 1),
p(1 | 0)− p(1 | 1)− p(1, 0 | 0)− p(0, 1 | 1),
p(1 | 1)− p(1 | 0)− p(1, 0 | 1)− p(0, 1 | 0)},

1In this exercise we ignore interference, and suppose that individuals are iid and that positivity and
consistency hold.
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and

UB = min{p(1, 1 | 0) + p(0, 0 | 0),
p(1, 1 | 1) + p(0, 0 | 1),
p(1 | 0)− p(1 | 1) + p(0, 0 | 0)− p(1, 1 | 1),
p(1 | 1)− p(1 | 0) + p(0, 0 | 1) + p(1, 1 | 0)},

Conclude that

UB−LB ≤ min{P (A = 0 | Z = 0)+P (A = 1 | Z = 1), P (A = 0 | Z = 1)+P (A = 1 | Z = 0)} ≤ 1.

and that UB − LB = 1 if and only if A ⊥⊥ Z.

Solution:
(a)

E(Y a=1 − Y a=0) = E(Y a=1)− E(Y a=0)

Now consider,

E(Y a=1) = E(Y a=1 | A = 1)P (A = 1) + E(Y a=1 | A = 0)P (A = 0)

= E(Y | A = 1)P (A = 1) + E(Y a=1 | A = 0)P (A = 0)

= P (Y = 1 | A = 1)P (A = 1) + P (Y a=1 = 1 | A = 0)P (A = 0)

= P (Y = 1, A = 1) + (1− P (Y a=1 = 0 | A = 0))P (A = 0)

= P (Y = 1, A = 1) + P (A = 0)− P (Y a=1 = 0 | A = 0)P (A = 0)

Similarly,

E(Y a=0) = P (Y = 1 | A = 0)P (A = 0) + P (Y a=0 = 1 | A = 1)P (A = 1)

= P (A = 0)− P (Y = 0 | A = 0)P (A = 0) + P (Y a=0 = 1 | A = 1)P (A = 1)

= P (A = 0)− P (Y = 0, A = 0) + P (Y a=0 = 1 | A = 1)P (A = 1)

∴ E(Y a=1)− E(Y a=0) = P (Y = 1, A = 1) + P (A = 0)− P (Y a=1 = 0 | A = 0))P (A = 0)

− (P (A = 0)− P (Y = 0, A = 0) + P (Y a=0 = 1 | A = 1)P (A = 1))

= P (Y = 1, A = 1) + P (Y = 0, A = 0)− P (Y a=1 = 0 | A = 0)P (A = 0)

− P (Y a=0 = 1 | A = 1)P (A = 1)

≤ P (Y = 1, A = 1) + P (Y = 0, A = 0)

We thus have the upper bound.
To get the lower bound

E(Y a=1) = P (Y = 1 | A = 1)P (A = 1) + P (Y a=1 = 1 | A = 0)P (A = 0)

= P (A = 1)− P (Y = 0 | A = 1)P (A = 1) + P (Y a=1 = 1 | A = 0)P (A = 0)

E(Y a=0) = P (Y = 1 | A = 0)P (A = 0) + P (Y a=0 | A = 1)P (A = 1)

= P (Y = 1, A = 0) + P (A = 1)− P (Y a=0 = 0 | A = 1)P (A = 1)
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∴ E(Y a=1)− E(Y a=0) = P (A = 1)− P (Y = 0 | A = 1)P (A = 1) + P (Y a=1 = 1 | A = 0)P (A = 0)

− (P (Y = 1, A = 0) + P (A = 1)− P (Y a=0 = 0 | A = 1)P (A = 1))

= −P (Y = 0, A = 1)− P (Y = 1, A = 0) + P (Y a=1 = 1 | A = 0)P (A = 0)

+ P (Y a=0 = 0 | A = 1)P (A = 1)

≥ −P (Y = 0, A = 1)− P (Y = 1, A = 0).

The difference between the bounds, UB − LB = P (Y = 1, A = 1) + P (Y = 0, A =
0) + P (Y = 1, A = 0) + P (Y = 0, A = 1) = 1

(b) (a) The investigator’s assumption translates to P(Y a=1 = 0) ≥ P(Y a=0 = 0)
(b) Using this assumption, the upper bound for E(Y a=1 − Y a=0) is 0.
(c) The naïve lower bound is −1 ≤ E(Y a=1−Y a=0), if everyone who takes the influenza

vaccine has no flu-like symptoms, and everyone who does not take the vaccine de-
velops flu-like symptoms. This bound cannot be made tighter.

(c) Since Y a ⊥⊥ Z, we can do the same process as earlier for E(Y a=1−Y a=0 | Z = z) instead
of E(Y a=1 − Y a=0). We thus get the first two components of LB and UB. To get the
other two components, consider the following:

E(Y a=1) = E(Y a=1 | Z)
= P (Y a=1 = 1 | Z)
= P (Y a=1 = 1, A = 1 | Z) + P (Y a=1 = 1, A = 0 | Z)
≥ P (Y a=1 = 1, A = 1 | Z)
= P (Y = 1, A = 1 | Z)

Also,

E(Y a=1) = E(Y a=1 | Z)
= 1− P (Y a=1 = 0 | Z)
= 1− P (Y a=1 = 0, A = 1 | Z)− P (Y a=1 = 0, A = 0 | Z)
≤ 1− P (Y a=1 = 0, A = 1 | Z)
= 1− P (Y = 0, A = 1 | Z)

So,

p(1, 1 | z) ≤ E(Y a=1) ≤ 1− p(0, 1 | z)

Similarly,

p(1, 0 | z′) ≤ E(Y a=0) ≤ 1− p(0, 0 | z′)
−(1− p(0, 0 | z′)) ≤ −E(Y a=0) ≤ −p(1, 0 | z′)

Take the cross terms, z 6= z′,

E(Y a=1 − Y a=0) ≥ p(1, 1 | z)− (1− p(0, 0 | z′))
= p(1, 1 | z) + p(0, 0 | z′)− 1
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= p(1, 1 | z) + p(1, 0 | z)− p(1, 0 | z) + p(0, 0 | z′) + p(0, 1 | z′)− p(0, 1 | z′)− 1

= p(1 | z)− p(1, 0 | z) + p(0 | z′)− p(0, 1 | z′)− 1

= p(1 | z)− (1− p(0 | z′))− p(1, 0 | z)− p(0, 1 | z′)
= p(1 | z)− p(1 | z′))− p(1, 0 | z)− p(0, 1 | z′).

Exercise 2 (Efficiency of linear adjustment). (Inspired by [1]) Consider 3 different linear
models defined by population least squares,

β∗ = argmin
β

E
[
(Y − β1 − β2A)2

]
β′ = argmin

β
E
[
(Y − β1 − β2A− βT3 L)2

]
(ANCOVA model)

β† = argmin
β

E
[
(Y − β1 − β2A− βT3 L− βT4 AL)2

]
Suppose (L,A, Y ) are i.i.d., A ⊥⊥ L, E(L) = 0.
(a) Show that2 β∗1 = β′1 = β†1 and β∗2 = β′2 = β†2.
(b) A classical result from M-estimation theory implies that

√
n(β̂m1 − β1)

d−→ N(0, V m),

where m ∈ {∗,′ , †}, π = P (A = a | L), V m = E[(A−π)2ε2m]
π2(1−π)2 and εi∗, εi′ , εi† are the error

terms in the regression estimators, for example,

εi,† = Yi − (β†1 + β†2Ai + β†T3 Li + β†T4 AiLi) .

Use this result to show that

V † ≤ min{V ′, V ∗} .
In other words, asymptotically it is more efficient to use covariates L in the model
indicated by †.3

Solution:
(a) Consider first the largest model (specified by β†). By taking partial derivatives wrt. β†1

and β†2 we have

E
[
Y − (β†1 + β†2A+ β†T3 L+ β†T4 AL)

]
= 0.

E
[
A(Y − (β†1 + β†2A+ β†T3 L+ β†T4 AL))

]
= 0.

Next, using the fact that A ⊥⊥ L, E(L) = 0 gives

E
[
Y − β†1 − β

†
2A
]
= 0,

E
[
A(Y − β†1 − β

†
2A)
]
= 0.

2We have not said anything about the linear model being correctly specified. We have not given an
argument why E(L) = 0. However, we could center Li by using Li − 1

n

∑n
i=1 Li, which will give the same

point estimates of the β’s but β† has larger variance.
3Careful consideration is required to decide whether or not it is more efficient to use L in a finite sample.
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We find exactly the same equations when we started by the models specified by β and β′.
By WLLN we would expect, under regularity conditions, that the maximum likelihood
estimator β̂† converges to β†.

(b) By taking partial derivatives ∂
∂β1
, . . . , ∂

∂β4
of E

[
(Y − β1− β2A− βT3 L− βT4 AL)2

]
, we find

E(εi†) = E(Aεi†) = E(Lεi†) = E(ALεi†) = 0 .(1)

Then, by the theorem on the equalities of the β’s,

ε∗ = ε† + β†T3 L+ β†T4 AL

ε′ = ε† + (β†T3 − β
′T
3 )L+ β†T4 AL

Eq. 1 implies that

Cov(ε†, β†T3 L+ β†T4 AL) = 0

Cov(ε†, (β†T3 − β
′T
3 )L+ β†T4 AL) = 0

Using the summation law of variances, for m ∈ {∗,′ }
E(ε2i†) ≤ E(ε2im),

which concludes the argument, because

Vm =
E[(A− π)2ε2m]
π2(1− π)2

A⊥⊥εm=
E[(A− π)2]E[ε2m]

π2(1− π)2
.

The independence A ⊥⊥ εm follows from
∂

∂β1
E[(Y − β1 − β2A] = 0,

∂

∂β1
E[(Y − β1 − β2A− βT3 L] = 0 .

References

[1] Qingyuan Zhao. Lecture Notes on Causal Inference. page 109.

5


	Exercise Sheet 12
	References

