EXERCISES FOR RANDOMIZATION AND CAUSATION (MATH-336)

EXERCISE SHEET 12

Exercise 1. In this exercise, you will study partial identification (bounds) of the average
treatment effect. Suppose that Z, A, Y, U satisfy the single-world causal model corresponding
to the graph below. Suppose that the measured variables Z, A, Y € {0, 1} are binary.

(a) Show that, without using Z, the average treatment effect of A and Y satisfies the fol-
lowing inequalities

—PY=0,A=1)-PY =1,A=0)<EY*“'-Y*) < PY =1,A=1)+P(Y =0,4A=0).

What is the difference between the upper and the lower bounds (UB — LB)?

(b) Suppose A = 1 if an individual elects to get the annual influenza vaccine and A = 0
otherwise. Let Y* = 1 if an individual subsequently does develop flu-like symptoms
when A = a, and Y* = 0 otherwise. Suppose that the investigator is comfortable with
assuming that each individual is more or as likely to develop flu-like symptoms if they
are unvaccinated versus if they are vaccinated /]

(i) Formalize the investigator’s assumption as a counterfactual inequality.
(ii) What is the upper bound on E(Y*=! — Y*=%) under this assumption?
(iii) Can we derive a tighter lower bound without adding additional assumptions?

(c) Now you will show some famous bounds using the instrumental variable Z. Suppose that
necessary consistency and positivity assumptions hold. Let p(y,a | z) denote P(Y =
Yy, A=a|Z =z) and p(y | z) denote P(Y =y | Z = z). Show that

LB <E(Y*'—y*=) < UB,

where
LB = max{ —p(0,1]0) —p(1,0|0),
—p(0,1]1) =p(1,0]1),
p(1]0)—p(1|1)=p(1,0[0)—p(0,1]1),
p(L[1) =p(1]0)=p(L,0]1)=p(0,1]0)},

"n this exercise we ignore interference, and suppose that individuals are iid and that positivity and
consistency hold.



and
UB = min{p
p

p
p

1,1]0)+p(0,0]0),
L1]1)+p(0,0]1),
110)=p(1]1)+p(0,0]0)—p(1,1]1),
1[1) =p(1]0)+p(0,0]1)+p(1,1]0)},

—_— o~~~

Conclude that
UB—LB <min{P(A=0|Z2=0+P(A=1|Z2=1),P(A=0|Z=1)+P(A=1|Z=0)}<1.
and that UB — LB =1 if and only if A I Z.

Solution:

(a)
E(yazl _ Ya:O) — E(yazl) o E(ya:O)
Now consider,
EY*=Y) =E(Y*"'|A=1)P(A=1)+EY*!'| A=0)P(A=0)

E(Y | A=1)P(A=1)+E(Y*" | A=0)P(A=0)

PY=1|A=1)PA=1)+PY*~'=1|A=0)P(A=0)
=PY=1,A=1)+(1-PY"'=0|A=0))P(A=0)

PY=1,A=1)+PA=0)—PY*'=0]|A=0)P(A=0)

Similarly.

EY* ") =PY =1]A=0PA=0)+PY*"=1|A=1)PA=1
—PA=0)—PY =0|A=0P(A=0)+PY* =1|A=1)P(A=1)
=P(A=0)—PY =0,A=0)+PY""=1|A=1)P(A=1)

EY*=YH) —EY* ) =PY =1,A=1)+P(A=0)—-PY*“'=0]|A=0))P(A=0)
—(P(A=0)-PY =0,A=0+PY*“=1|A=1)P(A=1))
=PY=1,A=1)+PY =0,A=0)-PY*~'=0|A=0)P(A=0)
~PY*"=1|A=1)P(A=1)
<PY=1,A=1)+PY =0,4=0)

We thus have the upper bound.
To get the lower bound

EWPU PY=1|A=1)PA=1)+PY"t=1]|A=0)P(A=0)
PA=1)-PY =0|A=1)PA=1)+PY " =1|A=0)P(A=0)
PY=1|A=0)PA=0)+PY*"|A=1)PA=1)

Y

PY=1,A=0+PA=1)-PY*"=0|A=1)P(A=1)
2

E(Ya 0)



SEYH) —EYS) =PA=1)-PY =0|A=1)PA=1)+PY*='=1|A=0)P(A
—(PY=1,A=0)+PA=1)-PY*“"=0|A=1)P(A=1))
—PY=0,A=1)-PY =1,A=0)+PY*'=1]A=0)P(A=
+P(Ya0_0\A:1) (A=1)
>-PY=0A=1)-PY =1,A=0).

The difference between the bounds, UB — LB = P(Y =1, A=1)+ P(Y =0,A =
0)+PY =1,A=0)+P(Y =0,A=1)=1

(a) The investigator’s assumption translates to P(Y*=! = 0) > P(Y*=" = 0)

(b) Using this assumption, the upper bound for E(Y*=! — Y=Y) is 0.

(c) The naive lower bound is —1 < E(Y*=! — Y=Y if everyone who takes the influenza
vaccine has no flu-like symptoms, and everyone who does not take the vaccine de-
velops flu-like symptoms. This bound cannot be made tighter.

(c) Since Y I Z, we can do the same process as earlier for E(Y*=! —Y%=0 | Z = 2) instead
of E(Y*=! —Y=0). We thus get the first two components of LB and UB. To get the
other two components, consider the following:

E(y*=) = E(Y*" | 2)

(b)

=PY*~'=1|2)
=PY"'=1,A=1|2)+PY*“'=1,A=0]2)
2P(Y“1_1A_1|Z)
= P(Y 1] 2)
Also,
E(Y*™) =E(Y*™ | Z)
=1-PY*='=0|2)
=1-PY"'=0,A=1|2)-PY*'=0,A=0]2)
<1-PY*'=0,A=1]2)
=1-PY=0A=1|2)
So,
p(1,1]2) SEY*™) <1-p((0,1]2)
Similarly,
p(1,0]2) <EY*™") <1-p(0,0] )
—(1=p(0,0]2) < -E(Y*™") < —p(1,0 ] =)

Take the cross terms, z # 2/,
E(Ya:1 - Ya:O) > p(lv 1 ‘ Z) - (1 _p(070 | Z,))
=p(1,1]2)+p(0,0]2)—1



(L,1]2)+p(1,0]2) —p(1,0]2)+p(0,0]2)+p(0,1]2)—p0,1]) -1
(1]2) =p(L0|2)+p0]z)-p0,1]2) -1
(
(

1z) = (1=p(0]2)) —=p(1,0]2) = p(0,1]2)
1]z)=p(1]2) = p(1,0]2) —p(0,1]2).

p
p
p
p

Exercise 2 (Efficiency of linear adjustment). (Inspired by [I]) Consider 3 different linear
models defined by population least squares,

g = arggninE[(Y — b1 — BA)?]

B =argminE[(Y — 8 — A — 83 L)*] (ANCOVA model)
B

gt = arg minE[(Y — 1 — P A — BgL — EZAL)Q]
B

Suppose (L, A,Y) are i.i.d., A L L, E(L) = 0.
(a) Show thatf] 57 = ] = ] and g = 5; = 5L,
(b) A classical result from M-estimation theory implies that
Am d m
V(B = Bi) = N0, V™),

where m € {x,/, 1}, r = P(A=a | L), V™ = EEE?&—Q;‘?"] and €, €7, €;+ are the error

terms in the regression estimators, for example,
T T
Use this result to show that
VI <min{V’, V*} .

In other words, asymptotically it is more efficient to use covariates L in the model
indicated by 1

Solution:

(a) Consider first the largest model (specified by 7). By taking partial derivatives wrt. 3]
and B;r we have

E[Y — (8] + 85 A+ 8I"L + " AL)] = 0.
T T
E[A(Y — (8] + BiA+ BI"L + B]"AL))] = 0.
Next, using the fact that A 1L L, E(L) = 0 gives
E[Y - 5] - 5iA] =0,
E[A(Y — 5] - 8lA)] = 0.
2We have not said anything about the linear model being correctly specified. We have not given an
argument why E(L) = 0. However, we could center L; by using L; — %Z?:l L;, which will give the same
point estimates of the 3’s but 4t has larger variance.

3Careful consideration is required to decide whether or not it is more efficient to use L in a finite sample.
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We find exactly the same equations when we started by the models specified by g and ['.
By WLLN we would expect, under regularity conditions, that the maximum likelihood
estimator 37 converges to .

(b) By taking partial derivatives 8%1, e 8%4 of E[(Y — 1 — oA — 8] L — BT AL)?], we find
(1) ]E(Ez”[) == E(AE,T) == E(LGZT) == E(ALGZT) =0.

Then, by the theorem on the equalities of the (s,
€« = € + ﬁ;TL + 5ZTAL
e =6+ (B — 8L+ BITAL
Eq. [T implies that
Cov(er, BTL+ BITAL) =0
Cov(er, (85" — B5") L+ BiTAL) = 0
Using the summation law of variances, for m € {x," }
E(e) < E(eg),
which concludes the argument, because
E[(A—m)*e] ave, E[(A—7)’|Elep]

V., = ml AL
w2(1 — 7)? w2(1 — )2
The independence A L ¢, follows from
0
—F[(Y — 1 — BA] =0
0

a_ﬂlE[(Y—ﬁl—ﬁzA—ﬁgTL]:O-
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