EXERCISES FOR RANDOMIZATION AND CAUSATION (MATH-336)

EXERCISE SHEET 8

Exercise 1 (IPW and M-estimation). This is the continuation of Exercise 1 of last week

and we will consider the same setup.

(a) Find the asymptotic variance of the IPW estimator of the ATE when the propensity
score is known.

(b) Suppose the propensity score is unknown. Write down the expression for the IPW
estimator, ATEIPW,U, of E[Y' —Y7Y;

(c) Suppose we do not want to posit a parametric model on the propensity score. Find
sufficient conditions for an estimator #(L) of 7 (L) that guarantee ATEpw ., to be a
consistent estimator of K[V —Y7?)].

Hint: use the properties of the IPW estimator when the propensity score is known; use
the triangular inequality.

(d) Can we use the result of point ¢) to build confidence intervals?

Solution:

(a) define
C(7) = B [-M(4,L,Y;7)]
B(7)=E [M(A,L,Y;7)M(A, L,Y;7)"]
all of which exists under exchangeability, positivity, and consistency. Remember that

we defined M as M(A,L,Y;v) = % — (11_—7?;)/ — ~ If these three quantities exist and
regularity conditions we have

Vi (i =0) SN[ 0,C () By)C ()"
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=V (v0)
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Let us compute these quantities.

M(aalay;ﬁy) =—1

so that
C(v)=1
and thus
Cy) ' =1
Next,

B(%) =F

(;g) o e ﬁg B ”)]
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Since

el 1)

we deduce that

AY  (1-A)Y
B =V —
oo =Ver (25~ 10y )
Finally, the asymptotic variance of the I PW estimator of the ATE when the propensity
score is known is :

- AY  (1-A)Y
Vi) =Var (w(L) BEET) )

where 7(-) is an estimator of 7 (+).
(c) let us denote with ATEpw ; the IPW estimator of the ATE when the propensity score
is known. By the triangular inequality for real numbers it follows

| ATEwpw, — E[Y!' = Y°] | =| ATEpw,, — ATEpw + ATEpws — E [Y' - Y] |
S | ATEIPW,U — Ar:A[‘EIpV\/,]~C |+ | ATEIPW,k — E [Yl — YO] | pointwise.

V VvV
= an = by,

We proved in the previous exercise that ATEIPW’k converges in probability to £ [V — Y],
i.e., b, = op(l). So what’s left to prove is that a, = op(1) too. Indeed

Nﬁ@wﬂ—ﬂﬂhW$:%ﬁéAﬂﬂﬂMy—ﬂM» (1 - A)Y (7(Li) — n(Li))

T(Li)m(Ls) (1 —&(L:)) (1 —m(Ls))

Furthermore, suppose (C;) there exists M such that M >|Y | w.p.1 and (Cy;) 3b > 0:
b<m(L)<1-—b, w.p.1l then, by the triangle inequality

I~ M ( =(L)—#(L)
(155

i=1

ﬁ@y—ﬂL”)WPJ

| ATEIPW,U - ATEIPW,k | < — | + |

n<y (L 1—#(L)
oM 7(L) — #(L

< — .p.1
by S R sy | VP

If (Crr1) ¢o = 0p(1), then ¢}, = op(1), since 2 is a constant. Now, Ve > 0, P(a, > ¢€) <
P({an, > e}n{d, > a,})+ P({a, > e} n{c, < an}) < P(c, > ¢), since P({c, < a,}) =0
and P({a, > e}n{d, > a,}) < P(c,, > ¢€) and therefore a,, = op(1). But a,,+b, = op(1),
by the Slutsky’s theorem. We conclude by the definition of convergence in probability.
(d) If an estimator is consistent, we know that it will converge in probability to the true

parameter as n — oo. This is important in practice, because it ensures that as we
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get more data the estimator will converge closer to the truth. However, consistencyﬂ is
insufficient to make inference about the uncertainty of our estimates, because we would
also like to know the rate of convergence. In particular, it does not give us information
about the (asymptotic) variance of the estimator from which we can construct confidence
intervals.

Exercise 2 (Pivot intervals). In this exercise we show that bootstrap pivot confidence inter-
vals are valid. Let 0,, = (X1, ..., X,), where X; are i.i.d. random variables, be an estimator
for a true parameter ¢ and let (6, ,,...,0; ) be bootstrap replications of 0, where B — oo.

We denote R, = én — 6 the pivot. The cumulative distribution function (CDF) of R, is
H(r)=P(R, <r).
Consider the interval C(cq, c2) where
«

clzén—H_1<1—%>, and02:én—H_1(§>,

for a € (0,1).
(a) Show that P(¢c; <0 <¢)=1-—a.
(b) Can we conclude that C? is an exact 1 — a confidence interval for 67
(c) A fellow student says that the result is interesting, but it’s not directly useful because
we don’t know the function H(r). Suggest a bootstrap estimator H(r) of H(r).
(d) Use the bootstrap estimator to argue that C,, = (¢4, é2) is an approximate 1—a« confidence
interval of 6, where
é]_ - 2én - AT_OC/27
é2 = 2én - A2/2>
and 0% is the a sample quantile of (é;yl, e A;;B).
(e) Explain how to find Bootstrap pivot confidence interval for the parameter of the logistic
model for the effect of pesticide in the previous exercises sheet.

Solution:
(a)
P(c; <0 <) :P(én—CQ Sén—HSén—q)
:]P)(én_CQ SRnSén—cl)
= H(0, — ;) — H(B, — c»).
From the definition of ¢; and ¢

122
2 2
=1l—-a

n this context with consistency we refer to asymptotic consistency, which is a property of an estimator.
This is totally different from the hypothesis of causal consistency (e.g., A = ¢ = Y* = Y), which is a
causal assumption and does not involve the definition of any estimator.
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(b) Because P(c; <0 < ¢3) =1—a, Cf is an exact 1 — « confidence interval for 6.
(c) Although H is unknown, we can form a bootstrap estimate H as

|Mm

nb<r

where R}, = é;‘Lb —0,.
(d) Let 75 denote the 8 sample quantile of (R,

wi1s-- -, Iy ) and let 05 denote the 8 sample
quantile of (0 ,,...,0; 5). Note that rs = 0 — 0,,. Tt follows that an approximate 1 — o

confidence interval is C,, = (¢1,¢2) where

¢y =6, —H 1(%) :én— Py = 20— 65,
(e) Suppose S = {wz;,y;}, are the samples from the logistic model. We draw B set
of Bootstrap samples of size n from S. Call the resulting Bootstrap samples 57 =
{z3,v5:0, = 1,...,B. Now for each j = 1,..., B, find the maximum likelihood es-
timate 35 = (8 ;, ;). Denote by ¢, and ¢;_, the a and 1 — a sample quantiles of
(B, ..., B5) respectively. The resulting Bootstrap confidence interval for 8 is (¢%, ¢f_,)-

Exercise 3 (Sandwich estimator of the variance of logistic model). Consider again the
logistic model in the previous exercise sheet, and assume 3y = 0. In other words, consider
the following logistic model:

E(Z) =g "(2:B), g(p) =log(-——),

L —p

where Z; are independent binary random variables and x; > 0.
In this exercise we use M-estimation theory to derive sandwich estimator of the variance
for the above logistic model where the M-estimator is the MLE.

(a) Write down the form of M(z, (), and let 3 be the resulting M-estimator (MLE in this

case).
(b) Use § to derive an empirical estimator C' for C(8) = E[-M(Z;, 8)).
(c) Use f3 to derive an empirical estimator B for B(3) = E[M(Z;, 3)?].
(d) Derive the sandwich estimator of the variance of 6 by:

§— B n,
Solution:
(a) Define
M (X,Y x(v-—— B
(X,Y;8): B+— ( _1+eﬁx)’ BeBCR.
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When we compute the MLE estimator of a logistic model we implicitly consider it con-
ditional on (z1,...,x,). Hence, the solution § of

in (Y;_ 1_|_e,5xi) =0

=1

is the same solution of

> M(x;, Y55 8) = 0.
i=1
(b) In the exercise about logistic regression model, we derived the second-derivative of log-
likelihood function of this model (derivative of M with respect to § in this case) . Thus
we use the corresponding empirical function to get

SN o N
n— (14 ef)?

(@)

(c) We can estimate B by

1 o pr \’

o ePTi

bty (v )
n <= 1 + efi

(d) Derive the estimator using the given formula in the question.

Exercise 4 (Predicting the propensity scores). (Based on [I], p. 191) Consider a scenario
under which L; is a common cause of treatment A and outcome Y, whereas Ly only causes
the outcome via the treatment (as illustrated by the SWIG below). This could for example

describe a situation where A € {0,1} denotes two possible treatments and L, € {0,1}
indicates the hospital at which an individual is treated, where hospital 1 provides treatment

A = 1 more often than hospital A = 0.
Suppose A, L, Lo, Y, Y® are drawn from the following data-generating mechanism:

1
Ly, Ly ~ Ber (p = 5)

A~ Ber (p =logit ' (=4 + L; + 8L,))
Y ~ Ber (p = logit™"(—2L; + 24))
Y*=' ~ Ber (p = logit ' (—2L; +2- 1))
(p (

=0 ~ Ber (p = logit ' (—2L; +2-0))
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subject to the constraint
Y =Y (A=1)+Y"I(A=0).

(a) Simulatd] A, Ly, Ly, Y, Y=, Y= for a population of 1 000 individuals using R.

(b) Plot the CDF of the Welghts Wy, = A‘L and W, 1, = m.

(c) Because the causal model satisfies exchangeablhty conditions Y* L A | Lyand Y* 1L A |
L1, Ly, we may use either w(A | Ly) or w(A | Ly, Ly) to identify E[Y*] from the observed
data using inverse probability weighting. Compute the mean and variance of fi;py, for
(A | Ly) and w(A | Ly, Ls) by simulating 5 000 instances of the above population,
using logistic models to estimate the propensity scores. Deduce that fi;py has larger
variance when we use Lo to estimate the propensity scores, even though we might get
more accurate predictions by including L, in the conditioning set.

Solution: Generating data:

library(ipw)
n <- 1000
set.seed(259)
# Generating data (Y.0 and Y.1 are counterfactuals)
genData<- function(n){
L1 <- rbinom(n, size=1, prob=.5)
L2 <- rbinom(n, size=1, prob=.5)
A <- rbinom(n, size =1, prob=plogis(-4+L1+8%L2))
Y.0 <- rbinom(n, size=1, prob= plogis(-2 + L1 + 2%0 ))
Y.1 <- rbinom(n, size=1, prob= plogis(-2 + L1 + 2%1 ))
Y<- as.numeric(A==0)*Y.0 + as.numeric(A==1)%Y.1
wt.L1 <-ipwpoint(A, family='binomial', link='logit',
denominator = “L1, data=0bsData)$ipw.weights
wt.L12 <- ipwpoint(A, family='binomial', link='logit',
denominator = “L1+L2, data=0bsData)$ipw.weights
data.frame(L1,L2,A,Y,Y.0,Y.1,wt.L1,wt.L12) }

ObsData<- genData(n)

write.csv(ObsData, file="exercise_sheets_week_by_week/R/prediction_propensity.csv",

Here, we have used the function ipwpoint () to estimate the IPW weights (the estimates
are identical to those we would obtain using the procedure outlined in the solutions of
Exercise 3 from Exercise Sheet 7). We plot the CDF of the weights (displayed in Fig. [1] and

Fig. [2):

library(latex2exp)

# Plotting the CDF of the IPW weights

plot(ecdf (ObsData$wt.L1), main=TeX('$W = \\frac{1}{\\pi(A| L_1)}$"'),
ylab=TeX('$P(W\\leq w)$'), xlab=TeX('$w$'))

and

2The implementation in R proceeds analogously to Exercise 3 of Exercise Sheet 7.
6
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FIGURE 1. CDF of IPW weights

# Plotting the CDF of the IPW weights
plot (ecdf (ObsData$wt.L12), main=TeX('$W = \\frac{1}{\\pi(A| L_1,L_2)1}$'),
ylab=TeX('$P(W\\leq w)$'), xlab=TeX('$w$'))

The mean and variance of the estimators can be estimated using the following code:

# number of iterations
set.seed(259)
n<-1000
R<- 5000
# matrixz for estimates from IPW
estimates<- matrix(, nrow = R, ncol = 2)
for(r in 1:R){
# Redraw the data
NewData<- genData(n)

# IPW estimators for the two models for \p%
IPW.L1<- mean( NewData$wt.Ll*as.numeric(NewData$A==1)*NewData$y) -
+ mean( NewData$wt.Ll*as.numeric(NewData$A==0)=*NewData$y)
IPW.L12<- mean( NewData$wt.L12*as.numeric(NewData$A==1)*NewData$Y) -
+ mean( NewData$wt.L12*as.numeric(NewData$A==0)*NewData$y)
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FIGURE 2. CDF of IPW weights

estimates[r,]<-c(IPW.L1, IPW.L12)
+

colMeans (estimates)

diag(var(estimates))
which yields the estimates shown in Table. [I}

TABLE 1. Estimated means and variances

1/n(A| L) 1/(A| Ly, Ly)
Mean 0.4415398 0.4350833
Variance 0.001417936  0.025774764

The average causal effect, u = E[Y*=! — Y= = (.4353, can be estimated by simulating
a population with 10 000 individuals:

n<-10000
set.seed(259)
big.population<-genData(n)



mu<- mean(big.population$Y.1-big.population$Y.0)
mu

As expected, [ipy is unbiased regardless of whether we use (A | L) or w(A | Ly, Lo)
to predict the treatment propensities. The fact that the variance of fi;py is larger for the
latter case is not surprising in light of the larger variance of the weights in the CDF plot.
Therefore, it is not necessarily true that we obtain better estimates by using more covariates
to predict the treatment propensity.
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