
EXERCISES FOR RANDOMIZATION AND CAUSATION (MATH-336)

Exercise Sheet 8

Exercise 1 (IPW and M-estimation). This is the continuation of Exercise 1 of last week
and we will consider the same setup.
(a) Find the asymptotic variance of the IPW estimator of the ATE when the propensity

score is known.
(b) Suppose the propensity score is unknown. Write down the expression for the IPW

estimator, ˆATEIPW,u, of E[Y 1 − Y 0];
(c) Suppose we do not want to posit a parametric model on the propensity score. Find

sufficient conditions for an estimator π̂(L) of π (L) that guarantee ˆATEIPW,u to be a
consistent estimator of E[Y 1 − Y 0].
Hint: use the properties of the IPW estimator when the propensity score is known; use
the triangular inequality.

(d) Can we use the result of point c) to build confidence intervals?

Solution:
(a) define

C (γ) = E
[
−Ṁ(A,L, Y ; γ)

]
B (γ) = E

[
M(A,L, Y ; γ)M(A,L, Y ; γ)T

]
all of which exists under exchangeability, positivity, and consistency. Remember that
we defined M as M(A,L, Y ; γ) = AY

π(L)
− (1−A)Y

1−π(L) − γ If these three quantities exist and
regularity conditions we have

√
n (γ̂ − γ0)

d→ N

0, C (γ0)
−1B(γ0)C (γ0)

−1T︸ ︷︷ ︸
:=V (γ0)


Let us compute these quantities.

Ṁ(a, l, y; γ) = −1

so that
C (γ0) = 1

and thus
C (γ0)

−1 = 1

Next,

B(γ0) = E

[(
AY

π(L)
− (1− A)Y

1− π(L)
− γ0

)2
]
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Since

γ0 = E

[
AY

π(L)
− (1− A)Y

1− π(L)

]
,

we deduce that

B(γ0) = V ar

(
AY

π(L)
− (1− A)Y

1− π(L)

)
Finally, the asymptotic variance of the IPW estimator of the ATE when the propensity

score is known is :

V (γ0) = V ar

(
AY

π(L)
− (1− A)Y

1− π(L)

)
(b)

ˆATEIPW =
1

n

n∑
i=1

Yi1(Ai = 1)

π̂(Li)
− Yi1(Ai = 0)

1− π̂(Li)

where π̂(·) is an estimator of π (·).
(c) let us denote with ˆATEIPW,k the IPW estimator of the ATE when the propensity score

is known. By the triangular inequality for real numbers it follows

| ˆATEIPW,u − E
[
Y 1 − Y 0

]
| =| ˆATEIPW,u − ˆATEIPW,k + ˆATEIPW,k − E

[
Y 1 − Y 0

]
|

≤ | ˆATEIPW,u − ˆATEIPW,k |︸ ︷︷ ︸
:= an

+ | ˆATEIPW,k − E
[
Y 1 − Y 0

]
|︸ ︷︷ ︸

:= bn

pointwise.

We proved in the previous exercise that ˆATEIPW,k converges in probability to E [Y 1 − Y 0],
i.e., bn = oP (1). So what’s left to prove is that an = oP (1) too. Indeed

ˆATEIPW,u − ˆATEIPW,k =
1

n

n∑
i=1

AiYi (π(Li)− π̂(Li))

π̂(Li)π(Li)
− (1− Ai)Yi (π̂(Li)− π(Li))

(1− π̂(Li)) (1− π(Li))
.

Furthermore, suppose (CI) there exists M such that M ≥| Y | w.p.1 and (CII) ∃b > 0 :
b ≤ π(L) ≤ 1− b, w.p.1 then, by the triangle inequality

| ˆATEIPW,u − ˆATEIPW,k | ≤
1

n

n∑
i=1

M

b

(
| π(L)− π̂(L)

π̂(L)
| + | π̂(L)− π(L)

1− π̂(L)
|
)

w.p.1

≤ 2M

b
sup | π(L)− π̂(L)

inf(π̂(L), 1− π̂(L))
|︸ ︷︷ ︸

:= cn︸ ︷︷ ︸
:=c′n

w.p.1

If (CIII) cn = oP (1), then c′n = oP (1), since 2M
b

is a constant. Now, ∀ε > 0, P (an ≥ ε) ≤
P ({an ≥ ε}∩{c′n ≥ an})+P ({an ≥ ε}∩{c′n < an}) ≤ P (c′n ≥ ε), since P ({c′n < an}) = 0
and P ({an ≥ ε}∩{c′n ≥ an}) ≤ P (c′n ≥ ε) and therefore an = oP (1). But an+bn = oP (1),
by the Slutsky’s theorem. We conclude by the definition of convergence in probability.

(d) If an estimator is consistent, we know that it will converge in probability to the true
parameter as n → ∞. This is important in practice, because it ensures that as we
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get more data the estimator will converge closer to the truth. However, consistency1 is
insufficient to make inference about the uncertainty of our estimates, because we would
also like to know the rate of convergence. In particular, it does not give us information
about the (asymptotic) variance of the estimator from which we can construct confidence
intervals.

Exercise 2 (Pivot intervals). In this exercise we show that bootstrap pivot confidence inter-
vals are valid. Let θ̂n = g(X1, . . . , Xn), where Xi are i.i.d. random variables, be an estimator
for a true parameter θ and let (θ̂∗n,1, . . . , θ̂

∗
n,B) be bootstrap replications of θ̂n, where B →∞.

We denote Rn = θ̂n − θ the pivot. The cumulative distribution function (CDF) of Rn is

H(r) = P(Rn ≤ r).

Consider the interval C∗n(c1, c2) where

c1 = θ̂n −H−1
(

1− α

2

)
, and c2 = θ̂n −H−1

(α
2

)
,

for α ∈ (0, 1).
(a) Show that P(c1 ≤ θ ≤ c2) = 1− α.
(b) Can we conclude that C∗n is an exact 1− α confidence interval for θ?
(c) A fellow student says that the result is interesting, but it’s not directly useful because

we don’t know the function H(r). Suggest a bootstrap estimator Ĥ(r) of H(r).
(d) Use the bootstrap estimator to argue that Cn = (ĉ1, ĉ2) is an approximate 1−α confidence

interval of θ, where

ĉ1 = 2θ̂n − θ̂∗1−α/2,

ĉ2 = 2θ̂n − θ̂∗α/2,

and θ̂∗α is the α sample quantile of (θ̂∗n,1, . . . , θ̂
∗
n,B).

(e) Explain how to find Bootstrap pivot confidence interval for the parameter of the logistic
model for the effect of pesticide in the previous exercises sheet.

Solution:
(a)

P(c1 ≤ θ ≤ c2) = P(θ̂n − c2 ≤ θ̂n − θ ≤ θ̂n − c1)

= P(θ̂n − c2 ≤ Rn ≤ θ̂n − c1)

= H(θ̂n − c1)−H(θ̂n − c2).
From the definition of c1 and c2

= H
(
H−1

(
1− α

2

))
−H

(
H−1

(α
2

))
= 1− α

2
− α

2
.

= 1− α
1In this context with consistency we refer to asymptotic consistency, which is a property of an estimator.

This is totally different from the hypothesis of causal consistency (e.g., A = a =⇒ Y a = Y ), which is a
causal assumption and does not involve the definition of any estimator.
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(b) Because P(c1 ≤ θ ≤ c2) = 1− α, C∗n is an exact 1− α confidence interval for θ.
(c) Although H is unknown, we can form a bootstrap estimate Ĥ as

Ĥ(r) =
1

B

B∑
b=1

I(R∗n,b ≤ r),

where R∗n,b = θ̂∗n,b − θ̂n.
(d) Let r∗β denote the β sample quantile of (R∗n,1, . . . , R

∗
n,B) and let θ∗β denote the β sample

quantile of (θ∗n,1, . . . , θ
∗
n,B). Note that rβ = θ∗β − θ̂n. It follows that an approximate 1−α

confidence interval is Cn = (ĉ1, ĉ2) where

ĉ1 = θ̂n − Ĥ−1
(

1− α

2

)
= θ̂n − r∗1−α/2 = 2θ̂ − θ∗1−α/2

ĉ2 = θ̂n − Ĥ−1
(α

2

)
= θ̂n − r∗α/2 = 2θ̂ − θ∗α/2.

(e) Suppose S = {xi, yi}ni=1 are the samples from the logistic model. We draw B set
of Bootstrap samples of size n from S. Call the resulting Bootstrap samples S∗j =
{x∗j,i, y∗j,i}, j = 1, . . . , B. Now for each j = 1, . . . , B, find the maximum likelihood es-
timate β∗j = (β∗0,j, β

∗
1,j). Denote by q∗α and q∗1−α the α and 1 − α sample quantiles of

(β∗1 , . . . , β
∗
B) respectively. The resulting Bootstrap confidence interval for β is (q∗α, q

∗
1−α).

Exercise 3 (Sandwich estimator of the variance of logistic model). Consider again the
logistic model in the previous exercise sheet, and assume β0 = 0. In other words, consider
the following logistic model:

E(Zi) = g−1(xiβ), g(µ) = log(
µ

1− µ
),

where Zi are independent binary random variables and xi > 0.
In this exercise we use M-estimation theory to derive sandwich estimator of the variance

for the above logistic model where the M-estimator is the MLE.

(a) Write down the form of M(z, β), and let β̂ be the resulting M-estimator (MLE in this
case).

(b) Use β̂ to derive an empirical estimator Ĉ for C(β) = E[−Ṁ(Zi, β)].
(c) Use β̂ to derive an empirical estimator B̂ for B(β) = E[M(Zi, β)2].
(d) Derive the sandwich estimator of the variance of θ̂ by:

Σ̂ = Ĉ−1B̂Ĉ−1/n.

Solution:

(a) Define

M (X, Y ; β) : β 7−→ X

(
Y − eβX

1 + eβX

)
, β ∈ B ⊂ R.
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When we compute the MLE estimator of a logistic model we implicitly consider it con-
ditional on (x1, . . . , xn). Hence, the solution β̂ of

n∑
i=1

xi

(
Yi −

eβxi

1 + eβxi

)
= 0

is the same solution of
n∑
i=1

M(xi, Yi; β̂) = 0.

(b) In the exercise about logistic regression model, we derived the second-derivative of log-
likelihood function of this model (derivative of M with respect to β in this case) . Thus
we use the corresponding empirical function to get

Ĉ =
1

n

n∑
i=1

x2i
eβ̂xi

(1 + eβ̂xi)2
.

(c) We can estimate B by

B̂ =
1

n

n∑
i=1

x2i

(
Yi −

eβ̂xi

1 + eβ̂xi

)2

.

(d) Derive the estimator using the given formula in the question.

Exercise 4 (Predicting the propensity scores). (Based on [1], p. 191) Consider a scenario
under which L1 is a common cause of treatment A and outcome Y , whereas L2 only causes
the outcome via the treatment (as illustrated by the SWIG below). This could for example

A a

L2

Y a

L1

describe a situation where A ∈ {0, 1} denotes two possible treatments and L2 ∈ {0, 1}
indicates the hospital at which an individual is treated, where hospital 1 provides treatment
A = 1 more often than hospital A = 0.

Suppose A,L1, L2, Y, Y
a are drawn from the following data-generating mechanism:

L1, L2 ∼ Ber

(
p =

1

2

)
A ∼ Ber

(
p = logit−1(−4 + L1 + 8L2)

)
Y ∼ Ber

(
p = logit−1(−2L1 + 2A)

)
Y a=1 ∼ Ber

(
p = logit−1(−2L1 + 2 · 1)

)
Y a=0 ∼ Ber

(
p = logit−1(−2L1 + 2 · 0)

)
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subject to the constraint

Y = Y a=1I(A = 1) + Y a=0I(A = 0) .

(a) Simulate2 A,L1, L2, Y, Y
a=0, Y a=1 for a population of 1 000 individuals using R.

(b) Plot the CDF of the weights WL1 = 1
π(A|L1)

and WL1,L2 = 1
π(A|L1,L2)

.
(c) Because the causal model satisfies exchangeability conditions Y a ⊥⊥ A | L1 and Y a ⊥⊥ A |

L1, L2, we may use either π(A | L1) or π(A | L1, L2) to identify E[Y a] from the observed
data using inverse probability weighting. Compute the mean and variance of µ̂IPW for
π(A | L1) and π(A | L1, L2) by simulating 5 000 instances of the above population,
using logistic models to estimate the propensity scores. Deduce that µ̂IPW has larger
variance when we use L2 to estimate the propensity scores, even though we might get
more accurate predictions by including L2 in the conditioning set.

Solution: Generating data:

library(ipw)
n <- 1000
set.seed(259)
# Generating data (Y.0 and Y.1 are counterfactuals)
genData<- function(n){

L1 <- rbinom(n, size=1, prob=.5)
L2 <- rbinom(n, size=1, prob=.5)
A <- rbinom(n, size =1, prob=plogis(-4+L1+8*L2))
Y.0 <- rbinom(n, size=1, prob= plogis(-2 + L1 + 2*0 ))
Y.1 <- rbinom(n, size=1, prob= plogis(-2 + L1 + 2*1 ))
Y<- as.numeric(A==0)*Y.0 + as.numeric(A==1)*Y.1
wt.L1 <-ipwpoint(A, family='binomial', link='logit',

denominator = ~L1, data=ObsData)$ipw.weights
wt.L12 <- ipwpoint(A, family='binomial', link='logit',

denominator = ~L1+L2, data=ObsData)$ipw.weights
data.frame(L1,L2,A,Y,Y.0,Y.1,wt.L1,wt.L12) }

ObsData<- genData(n)
write.csv(ObsData, file="exercise_sheets_week_by_week/R/prediction_propensity.csv", row.names=F)

Here, we have used the function ipwpoint() to estimate the IPW weights (the estimates
are identical to those we would obtain using the procedure outlined in the solutions of
Exercise 3 from Exercise Sheet 7). We plot the CDF of the weights (displayed in Fig. 1 and
Fig. 2):

library(latex2exp)
# Plotting the CDF of the IPW weights
plot(ecdf(ObsData$wt.L1), main=TeX('$W = \\frac{1}{\\pi(A| L_1)}$'),

ylab=TeX('$P(W\\leq w)$'), xlab=TeX('$w$'))

and
2The implementation in R proceeds analogously to Exercise 3 of Exercise Sheet 7.
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Figure 1. CDF of IPW weights

# Plotting the CDF of the IPW weights
plot(ecdf(ObsData$wt.L12), main=TeX('$W = \\frac{1}{\\pi(A| L_1,L_2)}$'),

ylab=TeX('$P(W\\leq w)$'), xlab=TeX('$w$'))

The mean and variance of the estimators can be estimated using the following code:

# number of iterations
set.seed(259)
n<-1000
R<- 5000
# matrix for estimates from IPW
estimates<- matrix(, nrow = R, ncol = 2)
for(r in 1:R){

# Redraw the data
NewData<- genData(n)

# IPW estimators for the two models for \pi
IPW.L1<- mean( NewData$wt.L1*as.numeric(NewData$A==1)*NewData$Y) -

+ mean( NewData$wt.L1*as.numeric(NewData$A==0)*NewData$Y)
IPW.L12<- mean( NewData$wt.L12*as.numeric(NewData$A==1)*NewData$Y) -

+ mean( NewData$wt.L12*as.numeric(NewData$A==0)*NewData$Y)
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Figure 2. CDF of IPW weights

estimates[r,]<-c(IPW.L1, IPW.L12)
}

# Average value of the estimates over R repetitions
colMeans(estimates)

# Variance of the estimators
diag(var(estimates))

which yields the estimates shown in Table. 1.

Table 1. Estimated means and variances

1/π(A | L1) 1/π(A | L1, L2)
Mean 0.4415398 0.4350833
Variance 0.001417936 0.025774764

The average causal effect, µ = E[Y a=1 − Y a=0] = 0.4353, can be estimated by simulating
a population with 10 000 individuals:

n<-10000
set.seed(259)
big.population<-genData(n)
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mu<- mean(big.population$Y.1-big.population$Y.0)
mu

As expected, µ̂IPW is unbiased regardless of whether we use π(A | L1) or π(A | L1, L2)
to predict the treatment propensities. The fact that the variance of µ̂IPW is larger for the
latter case is not surprising in light of the larger variance of the weights in the CDF plot.
Therefore, it is not necessarily true that we obtain better estimates by using more covariates
to predict the treatment propensity.
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