EXERCISES FOR RANDOMIZATION AND CAUSATION (MATH-336)

EXERCISE SHEET 7

Exercise 1 (IPW and M-estimation). In this exercise we will study the asymptotic properties
of the IPW estimator. Consider a sample S = {(A1, L1,Y1), ..., (A, L,, Y,)} of iid replicates
of (A, L,Y) such that Y* I A| L but Y* ¥ A, with A € {0,1} and L and Y discrete (with
finite support). Hereafter we will assume the propensity score 7 (a | l) = P(A = a|L =1) is
known. We also assume consistency and positivity.

(a) Write down the expression for the IPW estimator of the ATE of A on Y,
ATEpw = fupw(1) — fipw(0).
(b) Prove that ATEpyw is a consistent estimator of E[Y — Y], i.e.,
ATEpw & E[Y! —Y9).

(¢) Define the ATEjpy estimator as an M-estimator.
(d) Prove that ATEppw is a consistent estimator of E[Y! — Y] without using the same
arguments as in point b).
(e) Suppose now the propensity score is unknown and that
7 (1) :=m(1]1) = expit(yo + I71) for some v = (79,71) € T C R™.

(i) write down the expression for the IPW estimator of the ATE of A on Y;
(ii) prove that ATEpw is a consistent estimator of E[Y!—Y?] when we posit a correctly

specified model for the propensity score and we estimate § via maximum-likelihood
estimation. Can you still use the same arguments as in point b)? Is such an IPW
estimator a maximum-likelihood estimator?
Solution.:
(a) we denote 7 (a | 1) := P(A=a| L =1) and we posit
Va, fupw(a) = %Z %.
(b) for every i define
_Yil(Ai=1) Yil(A;=0)
m (1] Li) T (0] L;)
which is well-defined under positivity, that is,
Vija, P(L=1)>0= P(A=a|L=1)
is well defined, with finite mean and variance. Furthermore, S; is a measurable function
of A;, L;,Y; hence
Vi, ji# g, (A, Li,Y:) L (A5, L;,Y;) = S; L Sj.
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Under exchangeability, positivity, and consistency, for every :
E[S)|=F [Yl — Yo}
where the equality follows from the proof at pag 59 of the course and by linearity. Finally,
by the weak Law of Large Numbers (WLLN)
oS
Zz:l £> E[Yl . YO]
n

but

ATEIPW = lel 5

and we conclude. X
(c) we consider (A;, L;,Y;), i = 0,...,n iid replicates of (A, L,Y). The M-estimator 6 is
defined as the solution of
1 n
— > M(A;, Li,Y;;60) = 0.
n
i=1
where we defined
AY:  (1-A)Y,

(d) In this question, we need to check the regularity conditions given in slide 207 of the
lecture slides. First note that : 6y = ATE, My(0) = ATE — 6 (from question (b)),

~

Now let’s check the regularity conditions on the slide :

(1) M,(0) — Mo(0) = 150, élfjl) - (11__:(123? — ATFE which is constant with 6. So

supg| M, (0) — Mo(0)| = |2 50, 7;4(12?) - (11__:(’23; — ATE| —P 0 by the law of large

numbers.
(2) Since Y is categorical, © is compact. M is a linear function of 6 so it is continuous.
Finally, the solution is unique (there is a closed-form solution).

(3) This is trivial because M, (0) = 0. (In fact, this third regularity condition should be
checked carefully only if there is no closed-form solution; and we need to rely on an

optimization algorithm to estimate é)

(e) (i)

. L - Yil(Ai=1)  Yi1(4 =0)
ATEpw = — -
W Z_; #(Ly) 1—#(L;)

where 7(+) is an estimator of 7 ().
(i) We cannot use the same arguments as in point b). To see this, notice that 7 is a
solution of

" /1 exp(y1 + 72Li) ) 2
A, — —0, (1,7) ETCR
Z (LZ) ( 1+ exp(y1 + 72Ls) (1:72)

=1

which depends on ((Ay, L1),...,(An, L)) for every every n. The finite sample

distribution of 7 often cannot be computed in closed form and, when it is the
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case, for large n, we rely on its asymptotic distribution. However, this is i) only
an approximation when we actually consider finite samples and ii) we would need
to clarify the relation between the sample used to fit the propensity score model
and the sample used in the IPW estimator. Indeed, we cannot treat samples of
(A;, 7, Y;) as iid (without making additional assumptions) and we cannot use the
same arguments as in point b).

To prove that ATEIPW is a consistent estimator of E[Y! — Y] we define M and a
new parameter space [' as

AY Ay

N expit(y2+v3L) 1—expit(y2+v3L) g 5

M(ALY;y): | 2 | = | A—expit(yy +15L) v =(7,...,73) € CR3,
V3 AL — expit(ye + v3L)L

where the two last equations (M, and Mj) correspond to the equations used for
estimating the propensity score.
To show the consistency of the estimator, we can again prove the regularity condi-
tions of slide 207.

(i) The first regularity assumption (uniform convergence) is the harder to prove.

Let’s sketch the proof briefly for the ﬁrst part of the equation for o1 only
. . . . 1 AY

: the idea is to write = Z pr 72+73L) S = ’72+’Y3L) R Z W(L
We can easily show that =D ;g) converges uniformly to E [Yl] Wlth the
same arguments we used in question d. We then need to prove that the

1 AY AY :

error term - @ittt (D) converges umformly to 0. To do so, we
use that () AY is bounded by maz(|Y|) := M (Y is discrete finite), (ii)
expit(~a+vy3L) converges uniformly to (L) (under some regularity conditions,
notably the compactness, which can be proved because the propensity score is
bounded away from 0 and 1), and that (iii) the inverse function is €%—Lipsehi’cz

continuous on (¢, 1 — ¢) for any € > (] to prove that

SUP~

I A < Dsupfepit( + L) — (L)

n expit(vyy +y3L)  7w(L) ¢2 JUPy|CTPI 2 T s d
where sup, |expit(ys +v3L) — m(L)| converges to 0 by uniform convergence of
the logistic regression estimator.

(ii) The regularity conditions 2 and 3 follow easily from the properties the MLE

estimator for logistic regression and what was done above.

ATEIPW is not a maximum-likelihood estimator since it is not the maximizer of a

given likelihood function.

Exercise 2 (A comparison of variance). (From [I], Homework 2)
Suppose that the outcome and propensity model are known. Consider two estimators for

1 a=1 Ayl b
the average response: > " Y= and £ 377" 17r(A—|L)

Lwe can find one such e such that e < 7(L) < 1 — € because of the positivity assumption (the propensity
score is bounded away from 0 and 1)
2The first estimator is an estimator that is typically impossible to compute because all the counterfactuals
are not observed. However, in this exercise we have assumed that Y,=! is observed.
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(a) By assuming conditional exchangeability Y;* L A; | L;, show that the first has lower
variance than the second (that is, we pay some penalty for not observing all subjects in
the data set being treated).

Hint: Show that the second estimator can be written as the first plus something else,
and then demonstrate that the two terms are uncorrelated.

(b) Compute the difference in variance between the estimators in (a) if A is randomized with

probability P(A=1) =1 (ie. 7 =1)

Solution:

(a) We can write the second estimator as
1~ AV -
- Yy =t Vo ——— 1) .
nzmm Z *Z ()

Next, we want to show that the first sum on the right hand side is not correlated to the

second sum, that is:
A,
Vel vt ———=—-1) ) =0.
cor (1)

Since
I(A;=1)
a=1 a=1
lY (1) ]
[ [<A_1) a=1
(E P(A—llL)‘Y }‘1)
[ I(Alzl) a=1 a=1
(E_EL% A=1lLy | h HY !
[P(A;=1] L;, Y~
_Yal E 19 Yal
arn | ] )
Yziil a=1 P _]'|L a=1
- (E[P A=1(Ly | "
and
I(A; =1)
E |y*! ’ —1 Elye=Y — gyt
[ (W(Ai|L1) )} [ ] [ }=0
Hence
A
a=1 a=1 J .
COV(Y & (w(AALi) 1))
_ _ A; _ _ 4 (1(A;=1)
_ a=1 a=1 v _ a=1 _ a=1 a=1 ? _ —
=B \E[Yz (camy )1 } Bl ]\E{Yl (o) 1)] ’
0 =0
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and therefore

109 ) - ()

But

( ;TA'L );w( Zya 1>+var< Zyal(ﬁ 1)>
)

2\/&1’( ZY“ !

Var <Yia:1 <% >)

:E{i}

m(A;1L;)
Al?iAi B }/;2141 Y;2Al
B m2(Ai | Li)  w(Ai| Ly)

and therefore

(i ait) () (L)
2

= = . BlY?A].
n

In practice, we cannot compute LS~ Y,*=! because we only observe the counterfactual
outcome Y;*=! in (nearly) half of the 1nd1v1dualsE|

Exercise 3 (Stabilized IPW estimators). (Technical Points 12.1 and 12.2 in [2]) Let A, L,Y
denote treatment, baseline covariates and outcome respectively and suppose the usual as-
sumptions of conditional exchangeability, positivity and consistency hold.

(a) Show that we can identify E[Y*] from

I(A=a)Y
E [ ~(AIL) }

1(A=a)
E [w(A\L)]

E[Y®) =

This form of the identification formula motives a modified version of the IPW estimator
called the Hajek estimator (or stabilized IPW estimator):

1 I1(A;=a)Y;
Zl 1 w(A;|Ly; '7)

1 I(Aj=a)
W 2iml 7(A L)

3This is because the exact number of individuals who receive treatment A = 1 is binomially distributed
with n trials and p = %

(1) fistrrw(a) =
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(b) Show that

I(A=a)Yg(A)
E [ (AIL) ]

I(A=a)g(A)
E[ m(A|L) ]

E[Y] =

and that

»
B i Tt (A= )Y

n g(A;
%21:1 ﬂ(fl(ile;'y) [(Ai = a)

HsTipw = )

where g(A) is a function of A, and is consistently estimated by g(A). We refer to ;(71(4?2)
as stabilized weights because they are, in settings where rely on parametric assumptions,
often smaller than the regular IPW weights %, and can thus give rise to estimators with

a smaller variance.

Solution:

(a) The expectation in the denominator is 1, because

I(A=a)] [ I(A=a)
E[w<A|L>] P PA=alD)
i 1
-7 gz = | 1]
L |[P(A=1]1L)
“Plpa=1 L)]
—1.
(b) Then,
I(A=a)Y £(A) I(A=a)Y ()
E [ ~(AIL) ] b [ ~(AIL) ]
(A=) 7 (A) A=)/ (a)
E [ ~(AIL) ] E [ ~CAIL) ]
I(A=a)Y
_J@E [%]
I(A=a
fa)E [w((A\m) ]
_ By
Likewise,

1 ¢ f(A) — Ly o fa) =
n Zi:l (A Liy) I(A; =a) n Zi:l F(Ai‘lziﬂ/) (A =a)
B f(a)% Z?:l ,I,((IXTL?:S
- n I(Aj=a
f((l)% Zi:l W(E41|L27’)Y)

ﬂSTIPW (Cl) .

1 f(AY) _ 1\ f(a) _
w lic ey A= aYe 53 sy (A= a)Y
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Exercise 4 (Exploring the IPW estimator). (Based on Lab 4 of [3])

In this exercise we will implement the IPW and Hajek estimators numerically in R in order
to explore their efficiency in cases with near violations of positivity. Consider treatment A
and outcome Y with baseline covariates Wi, W5 in the dataset stabilized_weights.csv,
and suppose these satisfy the causal model below: The data was generated by drawing

W, ————— W,

A Y

n = 5000 i.i.d. samples from the distributions

1
W, ~ Ber (p: 5)

Wy ~ Multinom (1;(0.125,0.375,0.375,0.125))
A ~ Ber (p = logit ™' (—1.3 — 3W; + 3W3))
Y ~ Ber (p (=2 — 2W; + 3W 4 3A 4 2AW,))
Y= 1~Ber( = logit™ (=2 — 2W1 +3Wa +3-1+2-1-Wh))
(p (=2 —=2W1 +3W2+3-0+2-0-Wy)),

= logit™*
=0 ~ Ber (p = logit™
subject to the constraint

Y=Y "' [(A=1)+Y*"I(A=0).
The true effect is given by E[Y*=! —Y*="] & 0.26 (computed by evaluating = Z;il(Y;l -Y?)
in a larger realization of the data with n’ = 100000) .

(a) Import the dataset stabilized_weights.csv into R and use the glm command to per-
form the following logistic regression for the treatment mechanism w(A | L):

logit m(A | L;y) = vo + Wi + %W .

Plot the empirical cumulative distribution function of the IPW weights
use the weights to evaluate the IPW estimator

X R I(A1 = a)Y;
Hrew =& ; (A | Wig, Waisy)

1
(A |[Wh,i,Wa ;) and

(b) Compute firpy with truncated weights @ +10- I(7 > 10) instead of the weights &
in part (a).

(c) Evaluate the stabilized IPW estimator given by Eq. [1] using the weights as in part (a).

(d) Estimate the variance of the estimators in parts (a)-(d) by drawing R = 5000 different
realizations of a population with n = 5000 i.i.d. individuals from the data generating
mechanism outlined above.

Solution:

The IPW weights are computed as follows:
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FIGURE 1. CDF of IPW weights

ObsData<- read.csv('R/stabilized_weights.csv') # Importing data
n<- nrow(ObsData) # Defining the size of the population

# Performing logistic regression

pi.reg<- glm(A ~ W1 +W2, family="binomial", data=0bsData)
pi.reg$coef # Displaying the regresston coefficients

## (Intercept) Wi W2

#H# -1.332659 -3.224437 3.184136

# Predicting \pt(4/W1,W2; \gamma) using the regression model
pred.pil <- predict(pi.reg, type= "response")

pred.pi0 <- 1 - pred.pil

pi <- rep(NA, n)

# Evaluating \pi(A/W1,W2; \gamma) for each individual
pi[ObsData$A==1] <- pred.pil[ObsData$A==1]
pi[0ObsData$A==0] <- pred.piO[ObsData$A==0]

# Computing the wetghts
wt<- 1/pi

We also plot the CDF of the weights (displayed in Fig. [1)):

library(latex2exp)
# Plotting the CDF of the IPW weights
plot(ecdf (wt), main='"', ylab=TeX('$P(W\\leq w)$'), xlab=TeX('$w$'))

Computing ppw:

IPW <- mean( wt*as.numeric(ObsData$A==1)*0bsData$y) -
+ mean( wt*as.numeric(ObsData$A==0)*0bsData$y)
IPW

## [1] 0.1974928
Computing p;py with truncated weights:

wt.trunc<- wt
wt.trunc[ wt.trunc>10] =10
mean( wt.trunc*as.numeric(ObsData$A==1)*0bsDatady) -
+ mean( wt.trunc*as.numeric(ObsData$A==0)*0bsData$y)

## [1] 0.5437832

Computing psrrew:

mean( wt*as.numeric(ObsData$A==1)*0bsData$Y)/mean( wtx*
+ as.numeric(ObsData$A==1)) - mean( wt*
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+ as.numeric(ObsData$A==0)*0bsData$Y)/mean( wtx*
+ as.numeric(ObsData$A==0))

## [1] 0.2783772

The mean and variance of the estimators can be estimated using the following code:

genData<- function(n){
Wl <- rbinom(n, size=1, prob=.5)
W2 <- rbinom(n, size=3, prob=.5)
A <- rbinom(n, size =1, prob=plogis(-1.3 - 3*W1l +3%W2))
Y<- rbinom(n, size=1, prob= plogis(-2 - 2xW1 +3*W2 +3*A+ 2%xA*xW2 ))
Y.1<- rbinom(n, size=1, prob= plogis(-2 - 2*W1 +3*W2 +3*1+ 2x1xW2 ))
Y.0<- rbinom(n, size=1, prob= plogis(-2 - 2*W1 +3*W2 +3%x0+ 2x0*xW2 ))
data.frame(W1,W2, A, Y, Y.1,Y.0) }

# number of iterations
set.seed(259)
R<- 5000
# matrixz for estimates from IPW
estimates<- matrix(, nrow = R, ncol = 3)
for(r in 1:R){
# 0. redraw the data
NewData<- genData(n)
# 1. Estimate the propenstity \pt(4 | W1,W2)
pi.reg<- glm(A ~ W1 +W2, family="binomial", data=NewData)

# 2. # predicted probability of treatment
pred.pil <- predict(pi.reg, type= "response")
# predicted probability of treatment
pred.pi0 <- 1 - pred.pil
# we need the predicted prob of the observed treatment,
# given covariates.

# create an empty wvector

pi <- rep(NA, n)

# for individuals with A=1, \pi = P(4=1 | W1,W2)
pi[NewData$A==1] <- pred.pil[NewData$A==1]

# for individuals with A=0, gAW = P(4=0 | W1,W2)
pi[NewData$A==0] <- pred.piO[NewData$A==0]

# 3. Each subject gets a weight equal to 1/p%

wt<- 1/pi

# 4. # IPW estimator

IPW<- mean( wt*as.numeric(NewData$A==1)*NewData$y) -
+ mean( wt*as.numeric(NewData$A==0)*NewData$Y)



wt.trunc<- wt
wt.trunc[ wt.trunc>10] =10

IPW.tr<- mean( wt.trunc*as.numeric(NewData$A==1)*NewData$y) -
+ mean( wt.trunc*as.numeric(NewData$A==0)*NewData$y)

STIPW<-mean(wt*as.numeric(NewData$A==1)*NewData$yY)/
+ mean(wt*as.numeric(NewData$A==1))-

+ mean( wt*as.numeric(NewData$A==0)*NewData$Y)/

+ mean( wt*as.numeric(NewData$A==0))

estimates[r,]<-c(IPW, IPW.tr, STIPW)

colMeans (estimates)

diag(var(estimates))
which yields the following estimates:

IPW Truncated IPW Stabilized IPW
Mean 0.2625547 0.535427 0.2713136
Variance 0.03286365 0.000130988 0.002740077

Exercise 5. (Logistic regression model) We would like to estimate the effects of a pesticide
on the statue of stink bugs in a farm. We observe the statue of n stink bugs, and let Z; be the
binary outcome of the experiment for the stink bug ¢. Y is the sum of Z; and corresponds to
the number of stink bugs that are observed to be alive after the termination of experiment.

(a) What distribution is reasonable to assume for Y if each stink bug is given the same
dosage of pesticide? What assumption does that require making on the Z;?

(b) Now assume stink bug ¢ is given a specific dosage of pesticide, namely x; > 0. Using
logistic model, state the probability that a bug survives in terms of the constant 3, and
linear coefficient 3.

(¢) Describe how to fit the parameters of the linear model given data Z;.

(d) Recall from the statistics course that for large sample size n, the variance of the MLE
estimator is given by the inverse of the Fisher information (In other words, the variance
achieves Cramer-Rao bound asymptotically). Assume §y = 0 and calculate the Fisher
information and find an asymptotic estimate for the variance of 51.

(e) What assumptions were required to write down the likelihood function?

Solution:

(a) We can assume Z;s are i.i.d. Bernoulli variables and thus Y have Binomial distribution.
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(b) We can assume Z; are independent Bernoulli variables such that

B(Z) = g™ (6o + i), () =log(y).

Because z; > 0, and we can expect that increasing the dosage of pesticide, would decrease

the probability that fruit flies survive, thus ; should be negative.
(c) The likelihood for the model is

1(B) = Zz log p(xs, B) + (1 — 2) log(1 — p(x:, B))

= Z{Zz(ﬁo + B1$Z) — log(l + 650‘*‘51%‘)}
1=1
ePotB1z;

14ePothB1a; *

where p(z;, 5) = Thus we want to solve the equation 9B — 0. We can

oB
calculate g;la(g% , for BT = (By, B1), and starting from some initial 3, use the Newton-

Raphson method with the following iterations:

new __ Qold aQZ(B) —1al(ﬁ)
(d)
ol n ePotPrz;

8_61 - ;xl(zl - 1+ 6504-[31%)'

We compute the Fisher information () = —E[aa—;?l(ﬁ)] by calculating the second deriva-
tives of [:

0? i 9 ePotBizi

8_62l<ﬂ) - Z i (1 + 6/80+,31Ii)2.

=1

Thus for large sample size n, one can estimate the variance of B by the inverse of the
calculated Fisher information above.

(e) The logistic regression model is correctly specified that is, when the Y;’s are truly inde-
pendent random variables with distribution Bernoulli(p;), where the logit(p;) is the same
linear combination of the covariates x;.
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