
EXERCISES FOR RANDOMIZATION AND CAUSATION (MATH-336)

Exercise Sheet 7

Exercise 1 (IPW andM-estimation). In this exercise we will study the asymptotic properties
of the IPW estimator. Consider a sample S = {(A1, L1, Y1), . . . , (An, Ln, Yn)} of iid replicates
of (A,L, Y ) such that Y a ⊥⊥ A | L but Y a 6⊥⊥A, with A ∈ {0, 1} and L and Y discrete (with
finite support). Hereafter we will assume the propensity score π (a | l) = P (A = a|L = l) is
known. We also assume consistency and positivity.
(a) Write down the expression for the IPW estimator of the ATE of A on Y ,

ˆATEIPW = µ̂IPW(1)− µ̂IPW(0).

(b) Prove that ˆATEIPW is a consistent estimator of E[Y 1 − Y 0], i.e.,
ˆATEIPW

p→ E[Y 1 − Y 0].

(c) Define the ˆATEIPW estimator as an M-estimator.
(d) Prove that ˆATEIPW is a consistent estimator of E[Y 1 − Y 0] without using the same

arguments as in point b).
(e) Suppose now the propensity score is unknown and that

π (l) := π (1 | l) = expit(γ0 + lγ1) for some γ = (γ0, γ1) ∈ Γ ⊆ R2.

(i) write down the expression for the IPW estimator of the ATE of A on Y ;
(ii) prove that ˆATEIPW is a consistent estimator of E[Y 1−Y 0] when we posit a correctly

specified model for the propensity score and we estimate β via maximum-likelihood
estimation. Can you still use the same arguments as in point b)? Is such an IPW
estimator a maximum-likelihood estimator?

Solution:
(a) we denote π (a | l) := P (A = a | L = l) and we posit

∀a, µ̂IPW(a) =
1

n

n∑
i=1

Yi1(Ai = a)

π (a|Li)
.

(b) for every i define

Si =
Yi1(Ai = 1)

π (1 | Li)
− Yi1(Ai = 0)

π (0 | Li)
,

which is well-defined under positivity, that is,

∀l, a, P (L = l) > 0 =⇒ P (A = a | L = l)

is well defined, with finite mean and variance. Furthermore, Si is a measurable function
of Ai, Li, Yi hence

∀i, j, i 6= j, (Ai, Li, Yi) ⊥⊥ (Aj, Lj, Yj) =⇒ Si ⊥⊥ Sj.
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Under exchangeability, positivity, and consistency, for every i:

E [Si] = E
[
Y 1 − Y 0

]
where the equality follows from the proof at pag 59 of the course and by linearity. Finally,
by the weak Law of Large Numbers (WLLN)∑n

i=1 Si
n

p→ E[Y 1 − Y 0]

but

ˆATEIPW =

∑n
i=1 Si
n

and we conclude.
(c) we consider (Ai, Li, Yi), i = 0, . . . , n iid replicates of (A,L, Y ). The M-estimator θ̂ is

defined as the solution of
1

n

n∑
i=1

M(Ai, Li, Yi; θ) = 0.

where we defined

M(Ai, Li, Yi; θ) :=
AiYi
π(Li)

− (1− Ai)Yi
1− π(Li)

− θ

(d) In this question, we need to check the regularity conditions given in slide 207 of the
lecture slides. First note that : θ0 = ATE, M0(θ) = ATE − θ (from question (b)),
M0(θ0) = 0, Mn(θ̂) = 0.
Now let’s check the regularity conditions on the slide :
(1) Mn(θ) − M0(θ) = 1

n

∑n
i=1

AiYi
π(Li)

− (1−Ai)Yi
1−π(Li) − ATE which is constant with θ. So

supθ|Mn(θ) − M0(θ)| =
∣∣∣ 1n∑n

i=1
AiYi
π(Li)

− (1−Ai)Yi
1−π(Li) − ATE

∣∣∣ →p 0 by the law of large
numbers.

(2) Since Y is categorical, Θ is compact. M is a linear function of θ so it is continuous.
Finally, the solution is unique (there is a closed-form solution).

(3) This is trivial because Mn(θ̂) = 0. (In fact, this third regularity condition should be
checked carefully only if there is no closed-form solution; and we need to rely on an
optimization algorithm to estimate θ̂)

(e) (i)

ˆATEIPW =
1

n

n∑
i=1

Yi1(Ai = 1)

π̂(Li)
− Yi1(Ai = 0)

1− π̂(Li)

where π̂(·) is an estimator of π (·).
(ii) We cannot use the same arguments as in point b). To see this, notice that π̂ is a

solution of
n∑
i=1

(
1
Li

)(
Ai −

exp(γ1 + γ2Li)

1 + exp(γ1 + γ2Li)

)
= 0, (γ1, γ2) ∈ Γ ⊆ R2

which depends on ((A1, L1), . . . , (An, Ln)) for every every n. The finite sample
distribution of π̂ often cannot be computed in closed form and, when it is the

2



case, for large n, we rely on its asymptotic distribution. However, this is i) only
an approximation when we actually consider finite samples and ii) we would need
to clarify the relation between the sample used to fit the propensity score model
and the sample used in the IPW estimator. Indeed, we cannot treat samples of
(Ai, π̂i, Yi) as iid (without making additional assumptions) and we cannot use the
same arguments as in point b).
To prove that ˆATEIPW is a consistent estimator of E[Y 1 − Y 0] we define M and a
new parameter space Γ as

M(A,L, Y ; γ) :

 γ1
γ2
γ3

 7−→
 AY

expit(γ2+γ3L)
− (1−A)Y

1−expit(γ2+γ3L)
− γ1

A− expit(γ2 + γ3L)
AL− expit(γ2 + γ3L)L

 , γ = (γ1, . . . , γ3) ∈ Γ ⊆ R3,

where the two last equations (M2 and M3) correspond to the equations used for
estimating the propensity score.
To show the consistency of the estimator, we can again prove the regularity condi-
tions of slide 207.

(i) The first regularity assumption (uniform convergence) is the harder to prove.
Let’s sketch the proof briefly for the first part of the equation for γ1 only
: the idea is to write 1

n

∑
AY

expit(γ2+γ3L)
as 1

n

∑
AY

expit(γ2+γ3L)
− AY

π(L)
+ 1

n

∑
AY
π(L)

.
We can easily show that 1

n

∑
AY
π(L)

converges uniformly to E[Y 1] with the
same arguments we used in question d. We then need to prove that the
error term 1

n

∑
AY

expit(γ2+γ3L)
− AY

π(L)
converges uniformly to 0. To do so, we

use that (i) AY is bounded by max(|Y |) := M (Y is discrete finite), (ii)
expit(γ2+γ3L) converges uniformly to π(L) (under some regularity conditions,
notably the compactness, which can be proved because the propensity score is
bounded away from 0 and 1), and that (iii) the inverse function is 1

ε2
−Lipschitz

continuous on (ε, 1− ε) for any ε > 01 to prove that

supγ

∣∣∣∣ 1n∑ AY

expit(γ2 + γ3L)
− AY

π(L)

∣∣∣∣ < M

ε2
supγ|expit(γ2 + γ3L)− π(L)|

where supγ|expit(γ2 + γ3L)− π(L)| converges to 0 by uniform convergence of
the logistic regression estimator.

(ii) The regularity conditions 2 and 3 follow easily from the properties the MLE
estimator for logistic regression and what was done above.

ˆATEIPW is not a maximum-likelihood estimator since it is not the maximizer of a
given likelihood function.

Exercise 2 (A comparison of variance). (From [1], Homework 2)
Suppose that the outcome and propensity model are known. Consider two estimators for

the average response: 1
n

∑n
i=1 Y

a=1
i and 1

n

∑n
i=1

AiY
a=1
i

π(Ai|Li) .
2

1we can find one such ε such that ε < π(L) < 1− ε because of the positivity assumption (the propensity
score is bounded away from 0 and 1)

2The first estimator is an estimator that is typically impossible to compute because all the counterfactuals
are not observed. However, in this exercise we have assumed that Y a=1

i is observed.
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(a) By assuming conditional exchangeability Y a
i ⊥⊥ Ai | Li, show that the first has lower

variance than the second (that is, we pay some penalty for not observing all subjects in
the data set being treated).

Hint: Show that the second estimator can be written as the first plus something else,
and then demonstrate that the two terms are uncorrelated.

(b) Compute the difference in variance between the estimators in (a) if A is randomized with
probability P (A = 1) = 1

2
(i.e. π = 1

2
)

Solution:
(a) We can write the second estimator as

1

n

n∑
i=1

AiY
a=1
i

π(Ai | Li)
=

1

n

n∑
i=1

Y a=1
i +

1

n

n∑
i=1

Y a=1
i

(
Ai

π(Ai | Li)
− 1

)
.

Next, we want to show that the first sum on the right hand side is not correlated to the
second sum, that is:

Cov
(
Y a=1
i , Y a=1

i

(
Ai

π(Ai | Li)
− 1

))
= 0 .

Since

E

[
Y a=1
i

(
I(Ai = 1)

π(Ai | L1)
− 1

) ∣∣∣∣ Y a=1
i

]
= Y a=1

i

(
E

[
I(Ai = 1)

P (Ai = 1 | Li)

∣∣∣∣ Y a=1
i

]
− 1

)
= Y a=1

i

(
E

[
E

[
I(Ai = 1)

P (Ai = 1 | Li)

∣∣∣∣ Li, Y a=1
i

] ∣∣∣∣ Y a=1
i

]
− 1

)
= Y a=1

i

(
E

[
P (Ai = 1 | Li, Y a=1

i )

P (Ai = 1 | Li)

∣∣∣∣ Y a=1
i

]
− 1

)
Y ai ⊥⊥Ai|Li= Y a=1

i

(
E

[
P (Ai = 1 | Li)
P (Ai = 1 | Li)

∣∣∣∣ Y a=1
i

]
− 1

)
= 0 ,

and

E

[
Y a=1
i

(
I(Ai = 1)

π(Ai | L1)
− 1

)]
= E[Y a=1]− E[Y a=1] = 0 .

Hence

Cov
(
Y a=1
i , Y a=1

i

(
Ai

π(Ai | Li)
− 1

))

= E

Y a=1
i E

[
Y a=1
i

(
Ai

π(Ai | Li)
− 1

)
| Y a=1

i

]
︸ ︷︷ ︸

=0

− E[Y a=1
i ]E

[
Y a=1
i

(
I(Ai = 1)

π(Ai | L1)
− 1

)]
︸ ︷︷ ︸

=0

= 0
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and therefore

Var
(
Y a=1
i + Y a=1

i

(
Ai

π(Ai | Li)
− 1

))
= Var

(
Y a=1
i

)
+ Var

(
Y a=1
i

(
Ai

π(Ai | Li)
− 1

))
.

But

Var

(
1

n

n∑
i=1

AiY
a
i

π(Ai | Li)

)
= Var

(
1

n

n∑
i=1

Y a=1
i

)
+ Var

(
1

n

n∑
i=1

Y a=1
i

(
Ai

π(Ai | Li)
− 1

))

≥ Var

(
1

n

n∑
i=1

Y a=1
i

)
.

(b)

Var
(
Y a=1
i

(
I(Ai = 1)

π(Ai | Li)
− 1

))
= E

[(
Y a=1
i

(
I(Ai = 1)

π(A | L)
− 1

))2
]

= E

[
Y 2
i A

2
i

π2

]
− 2E[(Y a=1

i )2]︸ ︷︷ ︸
=E

[
Y 2
i
Ai

π(Ai|Li)

] +E

[
Y 2
i A

π

]

A2
i=Ai= E

[
Y 2
i Ai

π2(Ai | Li)
− Y 2

i Ai
π(Ai | Li)

]
and therefore

Var

(
1

n

n∑
i=1

AiY
a
i

π(Ai | Li)

)
− Var

(
1

n

n∑
i=1

Y a=1
i

)
=

1

n

(
E

[
Y 2
i A(1− π(Ai | Li))

π2(Ai | Li)

])
=

2

n
· E[Y 2

i A] .

In practice, we cannot compute 1
n

∑n
i=1 Y

a=1
i because we only observe the counterfactual

outcome Y a=1
i in (nearly) half of the individuals.3

Exercise 3 (Stabilized IPW estimators). (Technical Points 12.1 and 12.2 in [2]) Let A,L, Y
denote treatment, baseline covariates and outcome respectively and suppose the usual as-
sumptions of conditional exchangeability, positivity and consistency hold.
(a) Show that we can identify E[Y a] from

E[Y a] =
E
[
I(A=a)Y
π(A|L)

]
E
[
I(A=a)
π(A|L)

] .

This form of the identification formula motives a modified version of the IPW estimator
called the Hajek estimator (or stabilized IPW estimator):

µ̂STIPW (a) =

1
n

∑n
i=1

I(Ai=a)Yi
π(Ai|Li;γ)

1
n

∑n
i=1

I(Ai=a)
π(Ai|Li;γ)

.(1)

3This is because the exact number of individuals who receive treatment A = 1 is binomially distributed
with n trials and p = 1

2 .
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(b) Show that

E[Y a] =
E
[
I(A=a)Y g(A)

π(A|L)

]
E
[
I(A=a)g(A)
π(A|L)

]
and that

µ̂STIPW =

1
n

∑n
i=1

ĝ(Ai)
π(Ai|Li;γ) · I(Ai = a)Yi

1
n

∑n
i=1

ĝ(Ai)
π(Ai|Li;γ) · I(Ai = a)

,

where g(A) is a function of A, and is consistently estimated by ĝ(A). We refer to g(A)
π(A|L)

as stabilized weights because they are, in settings where rely on parametric assumptions,
often smaller than the regular IPW weights 1

π
, and can thus give rise to estimators with

a smaller variance.

Solution:
(a) The expectation in the denominator is 1, because

E

[
I(A = a)

π(A | L)

]
= E

[
I(A = a)

P (A = a | L)

]
= E

[
1

P (A = 1 | L)
E

[
I(A = a)

∣∣∣∣ L]]
= E

[
P (A = 1 | L)

P (A = 1 | L)

]
= 1 .

(b) Then,

E
[
I(A=a)Y f(A)

π(A|L)

]
E
[
I(A=a)f(A)
π(A|L)

] =
E
[
I(A=a)Y f(a)

π(A|L)

]
E
[
I(A=a)f(a)
π(A|L)

]
=
f(a)E

[
I(A=a)Y
π(A|L)

]
f(a)E

[
I(A=a)
π(A|L)

]
= E[Y a] .

Likewise,

1
n

∑n
i=1

f̂(Ai)
π(Ai|Li;γ) · I(Ai = a)Yi

1
n

∑n
i=1

f̂(Ai)
π(Ai|Li;γ) · I(Ai = a)

=

1
n

∑n
i=1

f̂(a)
π(Ai|Li;γ) · I(Ai = a)Yi

1
n

∑n
i=1

f̂(a)
π(Ai|Li;γ) · I(Ai = a)

=
f̂(a) 1

n

∑n
i=1

I(Ai=a)Yi
π(Ai|Li;γ)

f̂(a) 1
n

∑n
i=1

I(Ai=a)
π(Ai|Li;γ)

= µ̂STIPW (a) .
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Exercise 4 (Exploring the IPW estimator). (Based on Lab 4 of [3])
In this exercise we will implement the IPW and Hajek estimators numerically in R in order

to explore their efficiency in cases with near violations of positivity. Consider treatment A
and outcome Y with baseline covariates W1,W2 in the dataset stabilized_weights.csv,
and suppose these satisfy the causal model below: The data was generated by drawing

A Y

W1 W2

n = 5000 i.i.d. samples from the distributions

W1 ∼ Ber

(
p =

1

2

)
W2 ∼Multinom (1; (0.125, 0.375, 0.375, 0.125))

A ∼ Ber
(
p = logit−1(−1.3− 3W1 + 3W2)

)
Y ∼ Ber

(
p = logit−1(−2− 2W1 + 3W2 + 3A+ 2AW2)

)
Y a=1 ∼ Ber

(
p = logit−1(−2− 2W1 + 3W2 + 3 · 1 + 2 · 1 ·W2)

)
Y a=0 ∼ Ber

(
p = logit−1(−2− 2W1 + 3W2 + 3 · 0 + 2 · 0 ·W2)

)
,

subject to the constraint

Y = Y a=1I(A = 1) + Y a=0I(A = 0) .

The true effect is given by E[Y a=1−Y a=0] ≈ 0.26 (computed by evaluating 1
n′

∑n′

i=1(Y
1
i −Y 0

i )
in a larger realization of the data with n′ = 100000) .
(a) Import the dataset stabilized_weights.csv into R and use the glm command to per-

form the following logistic regression for the treatment mechanism π(A | L):

logit π(A | L; γ) = γ0 + γ1W1 + γ2W2 .

Plot the empirical cumulative distribution function of the IPW weights 1
π(Ai|W1,i,W2,i)

and
use the weights to evaluate the IPW estimator

µ̂IPW =
1

n

n∑
i=1

I(A1 = a)Yi
π(Ai | W1,i,W2,i; γ)

.

(b) Compute µ̂IPW with truncated weights I(π≤10)
π

+ 10 · I(π > 10) instead of the weights 1
π

in part (a).
(c) Evaluate the stabilized IPW estimator given by Eq. 1 using the weights as in part (a).
(d) Estimate the variance of the estimators in parts (a)-(d) by drawing R = 5000 different

realizations of a population with n = 5000 i.i.d. individuals from the data generating
mechanism outlined above.

Solution:
The IPW weights are computed as follows:
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Figure 1. CDF of IPW weights

ObsData<- read.csv('R/stabilized_weights.csv') # Importing data
n<- nrow(ObsData) # Defining the size of the population

# Performing logistic regression
pi.reg<- glm(A ~ W1 +W2, family="binomial", data=ObsData)
pi.reg$coef # Displaying the regression coefficients
## (Intercept) W1 W2
## -1.332659 -3.224437 3.184136
# Predicting \pi(A|W1,W2; \gamma) using the regression model
pred.pi1 <- predict(pi.reg, type= "response")
pred.pi0 <- 1 - pred.pi1
pi <- rep(NA, n)

# Evaluating \pi(A|W1,W2; \gamma) for each individual
pi[ObsData$A==1] <- pred.pi1[ObsData$A==1]
pi[ObsData$A==0] <- pred.pi0[ObsData$A==0]

# Computing the weights
wt<- 1/pi

We also plot the CDF of the weights (displayed in Fig. 1):

library(latex2exp)
# Plotting the CDF of the IPW weights
plot(ecdf(wt), main='', ylab=TeX('$P(W\\leq w)$'), xlab=TeX('$w$'))

Computing µIPW :

IPW <- mean( wt*as.numeric(ObsData$A==1)*ObsData$Y) -
+ mean( wt*as.numeric(ObsData$A==0)*ObsData$Y)

IPW
## [1] 0.1974928

Computing µIPW with truncated weights:

wt.trunc<- wt
wt.trunc[ wt.trunc>10] =10
mean( wt.trunc*as.numeric(ObsData$A==1)*ObsData$Y) -

+ mean( wt.trunc*as.numeric(ObsData$A==0)*ObsData$Y)
## [1] 0.5437832

Computing µSTIPW :

mean( wt*as.numeric(ObsData$A==1)*ObsData$Y)/mean( wt*
+ as.numeric(ObsData$A==1)) - mean( wt*
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+ as.numeric(ObsData$A==0)*ObsData$Y)/mean( wt*
+ as.numeric(ObsData$A==0))

## [1] 0.2783772

The mean and variance of the estimators can be estimated using the following code:

genData<- function(n){
W1 <- rbinom(n, size=1, prob=.5)
W2 <- rbinom(n, size=3, prob=.5)
A <- rbinom(n, size =1, prob=plogis(-1.3 - 3*W1 +3*W2))
Y<- rbinom(n, size=1, prob= plogis(-2 - 2*W1 +3*W2 +3*A+ 2*A*W2 ))
Y.1<- rbinom(n, size=1, prob= plogis(-2 - 2*W1 +3*W2 +3*1+ 2*1*W2 ))
Y.0<- rbinom(n, size=1, prob= plogis(-2 - 2*W1 +3*W2 +3*0+ 2*0*W2 ))

data.frame(W1,W2, A, Y, Y.1,Y.0) }

# number of iterations
set.seed(259)
R<- 5000
# matrix for estimates from IPW
estimates<- matrix(, nrow = R, ncol = 3)
for(r in 1:R){

# 0. redraw the data
NewData<- genData(n)
# 1. Estimate the propensity \pi(A | W1,W2)
pi.reg<- glm(A ~ W1 +W2, family="binomial", data=NewData)

# 2. # predicted probability of treatment
pred.pi1 <- predict(pi.reg, type= "response")

# predicted probability of treatment
pred.pi0 <- 1 - pred.pi1
# we need the predicted prob of the observed treatment,
# given covariates.

# create an empty vector
pi <- rep(NA, n)
# for individuals with A=1, \pi = P(A=1 | W1,W2)
pi[NewData$A==1] <- pred.pi1[NewData$A==1]
# for individuals with A=0, gAW = P(A=0 | W1,W2)
pi[NewData$A==0] <- pred.pi0[NewData$A==0]

# 3. Each subject gets a weight equal to 1/pi
wt<- 1/pi
# 4. # IPW estimator
IPW<- mean( wt*as.numeric(NewData$A==1)*NewData$Y) -

+ mean( wt*as.numeric(NewData$A==0)*NewData$Y)
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# 6. truncate weights at 10
wt.trunc<- wt
wt.trunc[ wt.trunc>10] =10
# evaluate the IPW estimand with the truncated weights
IPW.tr<- mean( wt.trunc*as.numeric(NewData$A==1)*NewData$Y) -
+ mean( wt.trunc*as.numeric(NewData$A==0)*NewData$Y)

# 7. Stabilized IPW estimator
STIPW<-mean(wt*as.numeric(NewData$A==1)*NewData$Y)/
+ mean(wt*as.numeric(NewData$A==1))-
+ mean( wt*as.numeric(NewData$A==0)*NewData$Y)/
+ mean( wt*as.numeric(NewData$A==0))

estimates[r,]<-c(IPW, IPW.tr, STIPW)
}

# Average value of the estimates over R repetitions
colMeans(estimates)

# Variance
diag(var(estimates))

which yields the following estimates:

IPW Truncated IPW Stabilized IPW
Mean 0.2625547 0.535427 0.2713136
Variance 0.03286365 0.000130988 0.002740077

Exercise 5. (Logistic regression model) We would like to estimate the effects of a pesticide
on the statue of stink bugs in a farm. We observe the statue of n stink bugs, and let Zi be the
binary outcome of the experiment for the stink bug i. Y is the sum of Zi and corresponds to
the number of stink bugs that are observed to be alive after the termination of experiment.
(a) What distribution is reasonable to assume for Y if each stink bug is given the same

dosage of pesticide? What assumption does that require making on the Zi?
(b) Now assume stink bug i is given a specific dosage of pesticide, namely xi > 0. Using

logistic model, state the probability that a bug survives in terms of the constant β0 and
linear coefficient β1.

(c) Describe how to fit the parameters of the linear model given data Zi.
(d) Recall from the statistics course that for large sample size n, the variance of the MLE

estimator is given by the inverse of the Fisher information (In other words, the variance
achieves Cramer-Rao bound asymptotically). Assume β0 = 0 and calculate the Fisher
information and find an asymptotic estimate for the variance of β̂1.

(e) What assumptions were required to write down the likelihood function?

Solution:
(a) We can assume Zis are i.i.d. Bernoulli variables and thus Y have Binomial distribution.
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(b) We can assume Zi are independent Bernoulli variables such that

E(Zi) = g−1(β0 + xiβ1), g(µ) = log(
µ

1− µ
).

Because xi > 0, and we can expect that increasing the dosage of pesticide, would decrease
the probability that fruit flies survive, thus β1 should be negative.

(c) The likelihood for the model is

l(β) =
n∑
i=1

zi log p(xi, β) + (1− zi) log(1− p(xi, β))

=
n∑
i=1

{zi(β0 + β1xi)− log(1 + eβ0+β1xi)}

where p(xi, β) = eβ0+β1xi

1+eβ0+β1xi
. Thus we want to solve the equation ∂l(β)

∂β
= 0. We can

calculate ∂2l(β)
∂β∂βT

, for βT = (β0, β1), and starting from some initial β, use the Newton-
Raphson method with the following iterations:

βnew = βold − (
∂2l(β)

∂β∂βT
)−1

∂l(β)

∂β
.

(d)
∂l

∂β1
=

n∑
i=1

xi
(
zi −

eβ0+β1xi

1 + eβ0+β1xi

)
.

We compute the Fisher information I(β) = −E[ ∂
2

∂β2 l(β)] by calculating the second deriva-
tives of l:

∂2

∂β2
l(β) = −

n∑
i=1

x2i
eβ0+β1xi

(1 + eβ0+β1xi)2
.

Thus for large sample size n, one can estimate the variance of β̂ by the inverse of the
calculated Fisher information above.

(e) The logistic regression model is correctly specified that is, when the Yi’s are truly inde-
pendent random variables with distribution Bernoulli(pi), where the logit(pi) is the same
linear combination of the covariates xi.
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