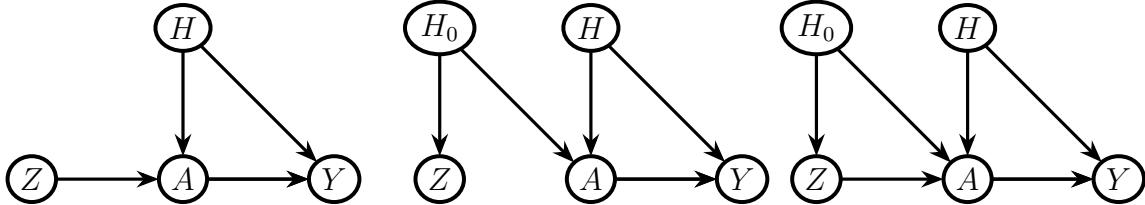


EXERCISES FOR RANDOMIZATION AND CAUSATION (MATH-336)

EXERCISE SHEET 11

Exercise 1 (Instrumental variables). (From [1]) Consider an instrumental variable setting which is described by one of the following three DAGs.



(a) Can we use the main IV assumptions (1)-(3) to infer any (conditional) independencies between the observed variables A, Z, Y , that is, any factorization of the law $p(y, a, z)$ that describes the observed data? We reproduce the main IV assumptions below for convenience:

- (1) $\text{cor}(Z, A) \neq 0$ (instrument strength)
- (2) $Y^{z,a} = Y^a$ for all a, z (exclusion restriction)
- (3) $Z \perp\!\!\!\perp Y^a$ for all a (unconfoundedness of Z).

(b) Consider the following structural equation model for Y :

$$(1) \quad Y = f_Y(A, H, \epsilon_Y) = h(\epsilon_Y)A + g(H, \epsilon_Y) .$$

The model does allow certain effect heterogeneity, because the individual level causal effect

$$Y^a - Y^{a'} = h(\epsilon_Y)(a - a')$$

is a random variable. The average causal effect is defined as

$$E[Y^a] - E[Y^{a'}] = E[h(\epsilon_Y)](a - a') .$$

Assume that the linear structural equation model Eq. 1 holds, that $Y^{a=0} \perp\!\!\!\perp Z$ and that $E[h(\epsilon_Y) | Z, A] = E[h(\epsilon_Y)]$. Show that the additive average causal effect is then given by

$$E[h(\epsilon_Y)] = \frac{\text{Cov}(Z, Y)}{\text{Cov}(Z, A)} .$$

(c) Assume that the model in Eq. 1 holds, and that $E[h(\epsilon_Y) | Z, A] = E[h(\epsilon_Y)]$. Show that then, there exists a constant β such that

$$E[Y | Z, A] - E[Y^0 | Z, A] = \beta A .$$

Solution:

(a) We need to verify the following six (conditional) independencies:

- (a) $Y \perp\!\!\!\perp A$ (fails because of the path $A \rightarrow Y$)
- (b) $Y \perp\!\!\!\perp A \mid Z$ (fails because of the path $A \rightarrow Y$)
- (c) $Y \perp\!\!\!\perp Z$ (fails because of the path $Z \rightarrow A \rightarrow Y$ in the left DAG)
- (d) $Y \perp\!\!\!\perp Z \mid A$ (fails because of the path $Z \rightarrow A \leftarrow H \rightarrow Y$)
- (e) $A \perp\!\!\!\perp Z$ (fails because of the path $Z \rightarrow A$ in the left DAG)
- (f) $A \perp\!\!\!\perp Z \mid Y$ (fails because of the path $Z \rightarrow A$ in the left DAG)

As there exist counterexamples which violate every one of the independencies above, while satisfying the IV assumptions (1)-(3), we can conclude that no such independencies are implied by the main IV assumptions and thus the law $p(a, z, y)$ factorizes as for a complete DAG:

$$p(a, z, y) = p(y \mid a, z)p(a \mid z)p(z) .$$

(b) Under Eq. 1,

$$Y - Y^{a=0} = h(\epsilon_Y)A$$

so

$$Y - h(\epsilon_Y)A = Y^{a=0}$$

and consequently

$$E[Y - h(\epsilon_Y)A \mid Z] = E[Y^{a=0} \mid Z] \stackrel{Y^{a=0} \perp\!\!\!\perp Z}{=} E[Y^{a=0}] .$$

Using the law of total expectation,

$$\begin{aligned} E[(Z - E[Z])(Y - h(\epsilon_Y)A)] &= E[E[(Z - E[Z])(Y - h(\epsilon_Y)A) \mid Z]] \\ &= E[(Z - E[Z])E[\underbrace{(Y - h(\epsilon_Y)A)}_{=Y^{a=0}} \mid Z]] \\ &\stackrel{Y^{a=0} \perp\!\!\!\perp Z}{=} E[(Z - E[Z])]E[(Y - h(\epsilon_Y)A)] \\ &= 0 . \end{aligned}$$

Likewise,

$$\begin{aligned} E[(Z - E[Z])(Y - h(\epsilon_Y)A)] &= \underbrace{E[(Z - E[Z])Y]}_{=\text{Cov}(Z, Y)} - E[(Z - E(Z))h(\epsilon_Y)A] \\ &= \text{Cov}(Z, Y) - E[E[(Z - E(Z))h(\epsilon_Y)A \mid Z, A]] \\ &= \text{Cov}(Z, Y) - E[A(Z - E(Z))\underbrace{E[h(\epsilon_Y) \mid Z, A]}_{\substack{\text{assumption} \\ \equiv E[h(\epsilon_Y)]}}] \\ &= \text{Cov}(Z, Y) - E[h(\epsilon_Y)] \cdot E[A(Z - E(Z))] \\ &= \text{Cov}(Z, Y) - E[h(\epsilon_Y)]\text{Cov}(Z, A) . \end{aligned}$$

Thus,

$$E[h(\epsilon_Y)] = \frac{\text{Cov}(Z, Y)}{\text{Cov}(Z, A)} .$$

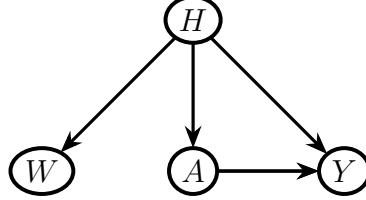
(c)

$$E[Y - Y_0 \mid A, Z] = AE[h(\epsilon_Y) \mid A, Z] - E[g(H, \epsilon_Y) \mid A, Z] + E[g(H, \epsilon_Y) \mid A, Z]$$

$$\begin{aligned}
&= AE[h(\epsilon_Y) \mid A, Z] \\
&= AE[h(\epsilon_Y)] .
\end{aligned}$$

The result follows because $AE[h(\epsilon_Y)]$ does not depend on Z .

Exercise 2 (A sensitivity analysis). Consider the treatment A , outcome Y , unmeasured variable H and measured pre-treatment variable W satisfying the graph below.



As we can see from the graph, both W and A are confounded for Y by H . Suppose that

$$E[Y^{a=0} \mid A = 1] - E[Y^{a=0} \mid A = 0] = E[W \mid A = 1] - E[W \mid A = 0] .$$

- (a) Use this assumption to find an identification formula for $E[Y^{a=1} - Y^{a=0} \mid A = 1]$ in terms of the observed data A, W, Y .
- (b) Can we interpret this as an average total effect in the entire population?

Solution:

In this problem, we derive the difference in differences estimand for negative outcome control.

- (a) From the assumption,

$$\begin{aligned}
E[Y^{a=0} \mid A = 1] &= E[Y^{a=0} \mid A = 0] + E[W \mid A = 1] - E[W \mid A = 0] \\
&\stackrel{\text{consistency}}{=} E[Y \mid A = 0] + E[W \mid A = 1] - E[W \mid A = 0]
\end{aligned}$$

We also have that

$$E[Y^{a=1} \mid A = 1] \stackrel{\text{consistency}}{=} E[Y \mid A = 1] .$$

Combining these two results gives

$$E[Y^{a=1} - Y^{a=0} \mid A = 1] = E[Y \mid A = 1] - E[Y \mid A = 0] .$$

- (b) This is the total effect in the treated subset of the population. This may be different from the effect of treatment in the untreated, $E[Y \mid A = 0]$, and thus cannot be interpreted as an average effect in the population.

Exercise 3 (Sensitivity analysis with IVs). Consider a binary instrument Z , a binary treatment A and a binary outcome Y satisfying:

- (1) Exclusion restriction: $Y^{z,a} = Y^a$
- (2) IV exchangeability: $Y^a \perp\!\!\!\perp Z$

Show that under assumptions (1)-(2),

$$P(Y = 0, A = 1 \mid Z = 0) + P(Y = 1, A = 1 \mid Z = 1) \leq 1 .$$

Hint: Use the fact that $p(x_1, x_2 \mid x_3) \leq p(x_1 \mid x_3)$. Likewise, it can also be shown that

- $P(Y = 0, A = 1 \mid Z = 0) + P(Y = 1, A = 1 \mid Z = 1) \leq 1$

- $P(Y = 0, A = 1 \mid Z = 1) + P(Y = 1, A = 1 \mid Z = 0) \leq 1$
- $P(Y = 0, A = 0 \mid Z = 1) + P(Y = 1, A = 0 \mid Z = 0) \leq 1$

These inequalities can be used to falsify IV exchangeability assumption. With some more arguments, it is also possible to use the IV inequalities to obtain bounds on causal effects.

Solution:

In this problem, we derive instrumental variable bounds.

$$\begin{aligned}
 P(Y^{a=1} = 1) &\stackrel{Y^a \perp\!\!\!\perp Z}{=} P(Y^{a=1} = 1 \mid Z = 1) \\
 &\geq P(Y^{a=1} = 1, A = 1 \mid Z = 1) \\
 &\stackrel{\text{consistency}}{=} P(Y = 1, A = 1 \mid Z = 1) .
 \end{aligned}$$

Likewise,

$$\begin{aligned}
 P(Y^{a=1} = 0) &\stackrel{Y^a \perp\!\!\!\perp Z}{=} P(Y^{a=1} = 0 \mid Z = 0) \\
 &\geq P(Y^{a=1} = 0, A = 1 \mid Z = 0) \\
 &\stackrel{\text{consistency}}{=} P(Y = 0, A = 1 \mid Z = 0)
 \end{aligned}$$

which is equivalent to

$$1 - P(Y^{a=1} = 1) \geq P(Y = 0, A = 1 \mid Z = 0) .$$

Using the previously derived inequality for the probability on LHS gives

$$1 - P(Y = 1, A = 1 \mid Z = 1) \geq P(Y = 0, A = 1 \mid Z = 0) .$$

REFERENCES

[1] Andrea Rotnitzky. BST 257 (Harvard T.H. Chan School of Public Health).