
EXERCISES FOR RANDOMIZATION AND CAUSATION (MATH-336)

Exercise Sheet 11

Exercise 1 (Instrumental variables). (From [1]) Consider an instrumental variable setting
which is described by one of the following three DAGs.
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(a) Can we use the main IV assumptions (1)-(3) to infer any (conditional) independencies
between the observed variables A,Z, Y , that is, any factorization of the law p(y, a, z)
that describes the observed data? We reproduce the main IV assumptions below for
convenience:
(1) cor(Z,A) 6= 0 (instrument strength)
(2) Y z,a = Y a for all a, z (exclusion restriction)
(3) Z ⊥⊥ Y a for all a (unconfoundedness of Z).

(b) Consider the following structural equation model for Y :

Y = fY (A,H, εY ) = h(εY )A+ g(H, εY ) .(1)

The model does allow certain effect heterogeneity, because the individual level causal
effect

Y a − Y a′ = h(εY )(a− a′)
is a random variable. The average causal effect is defined as

E[Y a]− E[Y a′ ] = E[h(εY )](a− a′) .

Assume that the linear structural equation model Eq. 1 holds, that Y a=0 ⊥⊥ Z and that
E[h(εY ) | Z,A] = E[h(εY )]. Show that the additive average causal effect is then given
by

E[h(εY )] =
Cov(Z, Y )

Cov(Z,A)
.

(c) Assume that the model in Eq. 1 holds, and that E[h(εY ) | Z,A] = E[h(εY )]. Show that
then, there exists a constant β such that

E[Y | Z,A]− E[Y 0 | Z,A] = βA .

Solution:

(a) We need to verify the following six (conditional) independencies:
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(a) Y ⊥⊥ A (fails because of the path A→ Y )
(b) Y ⊥⊥ A | Z (fails because of the path A→ Y )
(c) Y ⊥⊥ Z (fails because of the path Z → A→ Y in the left DAG)
(d) Y ⊥⊥ Z | A (fails because of the path Z → A← H → Y )
(e) A ⊥⊥ Z (fails because of the path Z → A in the left DAG)
(f) A ⊥⊥ Z | Y (fails because of the path Z → A in the left DAG)
As there exist counterexamples which violate every one of the independencies above,
while satisfying the IV assumptions (1)-(3), we can conclude that no such independencies
are implied by the main IV assumptions and thus the law p(a, z, y) factorizes as for a
complete DAG:

p(a, z, y) = p(y | a, z)p(a | z)p(z) .

(b) Under Eq. 1,

Y − Y a=0 = h(εY )A

so

Y − h(εY )A = Y a=0

and consequently

E[Y − h(εY )A | Z] = E[Y a=0 | Z] Y
a=0⊥⊥Z
= E[Y a=0] .

Using the law of total expectation,

E[(Z − E[Z])(Y − h(εY )A)] = E[E[(Z − E[Z])(Y − h(εY )A) | Z]]
= E[(Z − E[Z])E[(Y − h(εY )A)︸ ︷︷ ︸

=Y a=0

| Z]]

Y a=0⊥⊥Z
= E[(Z − E[Z])]E[(Y − h(εY )A)]

= 0 .

Likewise,

E[(Z − E[Z])(Y − h(εY )A)] = E[(Z − E[Z])Y ]︸ ︷︷ ︸
=Cov(Z,Y )

−E[(Z − E(Z))h(εY )A]

= Cov(Z, Y )− E[E[(Z − E(Z))h(εY )A | Z,A]]
= Cov(Z, Y )− E[A(Z − E(Z))E[h(εY ) | Z,A]︸ ︷︷ ︸

assumption
= E[h(εY )]

]

= Cov(Z, Y )− E[h(εY )] · E[A(Z − E(Z))]
= Cov(Z, Y )− E[h(εY )]Cov(Z,A) .

Thus,

E[h(εY )] =
Cov(Z, Y )

Cov(Z,A)
.

(c)

E[Y − Y0 | A,Z] = AE[h(εY ) | A,Z]− E[g(H, εY ) | A,Z] + E[g(H, εY ) | A,Z]
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= AE[h(εY ) | A,Z]
= AE[h(εY )] .

The result follows because AE[h(εY )] does not depend on Z.

Exercise 2 (A sensitivity analysis). Consider the treatment A, outcome Y , unmeasured
variable H and measured pre-treatment variable W satisfying the graph below.
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As we can see from the graph, both W and A are confounded for Y by H. Suppose that

E[Y a=0 | A = 1]− E[Y a=0 | A = 0] = E[W | A = 1]− E[W | A = 0] .

(a) Use this assumption to find an identification formula for E[Y a=1 − Y a=0 | A = 1] in
terms of the observed data A,W, Y .

(b) Can we interpret this as an average total effect in the entire population?

Solution:
In this problem, we derive the difference in differences estimand for negative outcome

control.
(a) From the assumption,

E[Y a=0 | A = 1] = E[Y a=0 | A = 0] + E[W | A = 1]− E[W | A = 0]

consistency
= E[Y | A = 0] + E[W | A = 1]− E[W | A = 0]

We also have that

E[Y a=1 | A = 1]
consistency

= E[Y | A = 1] .

Combining these two results gives

E[Y a=1 − Y a=0 | A = 1] = E[Y −W | A = 1]− E[Y −W | A = 0] .

(b) This is the total effect in the treated subset of the population. This may be different from
the effect of treatment in the untreated, E[Y | A = 0], and thus cannot be interpreted
as an average effect in the population.

Exercise 3 (Sensitivity analysis with IVs). Consider a binary instrument Z, a binary treat-
ment A and a binary outcome Y satisfying:
(1) Exclusion restriction: Y z,a = Y a

(2) IV exchangeability: Y a ⊥⊥ Z

Show that under assumptions (1)-(2),

P (Y = 0, A = 1 | Z = 0) + P (Y = 1, A = 1 | Z = 1) ≤ 1 .

Hint: Use the fact that p(x1, x2 | x3) ≤ p(x1 | x3). Likewise, it can also be shown that
• P (Y = 0, A = 1 | Z = 0) + P (Y = 1, A = 1 | Z = 1) ≤ 1
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• P (Y = 0, A = 1 | Z = 1) + P (Y = 1, A = 1 | Z = 0) ≤ 1
• P (Y = 0, A = 0 | Z = 1) + P (Y = 1, A = 0 | Z = 0) ≤ 1

These inequalities can be used to falsify IV exchangeability assumption. With some more
arguments, it is also possible to use the IV inequalities to obtain bounds on causal effects.

Solution:
In this problem, we derive instrumental variable bounds.

P (Y a=1 = 1)
Y a⊥⊥Z
= P (Y a=1 = 1 | Z = 1)

≥ P (Y a=1 = 1, A = 1 | Z = 1)

consistency
= P (Y = 1, A = 1 | Z = 1) .

Likewise,

P (Y a=1 = 0)
Y a⊥⊥Z
= P (Y a=1 = 0 | Z = 0)

≥ P (Y a=1 = 0, A = 1 | Z = 0)

consistency
= P (Y = 0, A = 1 | Z = 0)

which is equivalent to
1− P (Y a=1 = 1) ≥ P (Y = 0, A = 1 | Z = 0) .

Using the previously derived inequality for the probability on LHS gives
1− P (Y = 1, A = 1 | Z = 1) ≥ P (Y = 0, A = 1 | Z = 0) .
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