
EXERCISES FOR RANDOMIZATION AND CAUSATION (MATH-336)

Exercise Sheet 6

Exercise 1 (Censoring). Consider the DAG and SWIG below, reproduced from the lectures.
Let A,C, Y ∈ {0, 1} be indicators of treatment, loss to follow-up and outcome respectively.

A C

L

Y
A a Ca c = 0

L

Y a,c=0

(a) Give one English sentence that explains the interpretation of E[Y a,c=0]. Can we identify
E[Y a,c=1] from the observed data distributions?

(b) Write down the positivity and conditional exchangeability assumption required to iden-
tify E[Y a,c=0].

(c) Find an identification formula for E[Y a,c=0].

Solution:
(a) E[Y a,c=0] is the expected (counterfactual) outcome under an intervention which sets

treatment A to a and eliminates loss to follow-up (i.e. sets C to 0). In general, we
cannot say anything about E[Y a,c=1], because we do not observe individuals after they
are lost to follow-up.

Parts (b) and (c) are special cases of Exercise 2(e) of Exercise Sheet 5 with L0 = ∅, A0 = A
and A1 = C.
(b) Conditional exchangeability for all a ∈ {0, 1}:

Y a,c=0 ⊥⊥ A ,

Y a,c=0 ⊥⊥ Ca | A,L .

Positivity for all a ∈ {0, 1}:

P (C = 0 | L = l, A = a) > 0 whenever P (L = l, A = a) > 0 ,

P (A = a) > 0 .

(c) From Exercise 2(e) of Exercise Sheet 5, we know that

E[Y a,c=0] =
∑
l

E[Y | A = a, C = 0, L = l]P (L = l) .

whenever consistency, conditional exchangeability and positivity hold.
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Exercise 2 (Imperfect adherence). Consider a randomized trial where patients are assigned
to one of two treatments R ∈ {0, 1} by randomization (flipping an unbiased coin) but do
not necessarily adhere to their assigned treatment, such that their observed treatment level
A ∈ {0, 1} may differ from R. Let L be a baseline covariate and let Y be the outcome.
Suppose that all variables are binary, and assume that the causal model in the DAG and
corresponding SWIG below are valid (The graphs are reproduced from lectures).

R A

L

Y A a

L

Y aR

(a) (i) Write down an estimand for the per protocol effect (causal effect of A on Y ). Write
down the exchangeability conditions which allow us to identify the per protocol
effect in a study with imperfect adherence.

(ii) Find an identification formula for this causal effect.
(b) (i) Write down an estimand for the intention-to-treat effect (the causal effect of R

on Y ). Write down the positivity and conditional exchangeability conditions which
allow us to identify the intention-to-treat effect in a study with imperfect adherence
(here, we assume no censoring)? Compare this to your answer in part (a)-(i)

(ii) Find an identification formula for this causal effect.
Next, we will consider a setting with imperfect adherence and losses to follow-up, depicted
in the following DAG:

R A

L

C Y

G

(c) Write down the estimand for the causal effect of A on Y if we were to intervene to
eliminate loss to follow-up, and draw the SWIG corresponding to this estimand. Write
down the positivity and conditional exchangeability conditions which allow us to identify
this estimand, and find an identification formula for this estimand.

Solution:
(a) (i) The estimand is E[Y a].

Conditional exchangeability and positivity for all a ∈ {0, 1}:
Y a ⊥⊥ A | L ,

P (A = a | L = l) > 0 whenever P (L > l) > 0 .
2



(ii) The identification formula is given by

E[Y a] =
∑
y

y · P (Y a = y)
LOTP
=

∑
y

∑
l

y · P (Y = y | L = l)P (L = l)

Y a⊥⊥A|L
=

∑
y

∑
l

y · P (Y = y | A = a, L = l)P (L = l)

consistency
=

∑
l

E[Y | A = a, L = l]P (L = l) .

(b) (i) The estimand is given by E[Y r]. We only require Y r ⊥⊥ R and P (R = r) > 0 for all
r ∈ {0, 1} to identify E[Y r]. This is ensured to hold when R is randomized (assigned
by flipping a coin), whereas Y a ⊥⊥ A | L is a strong assumption which requires
detailed knowledge about the causes of failing to adhere to assigned treatment.

(ii) E[Y r]
Y r⊥⊥R
= E[Y r | R = r]

consistency
= E[Y | R = r].

(c) The estimand is given by E[Y a,c=0] and the desired SWIG G(a, c = 0) is given below.
The identification conditions are :

A a Ca c = 0

L

Y aR

G(a, c = 0)

Conditional exchangeability for all a ∈ {0, 1}:
Y a,c=0 ⊥⊥ A | L,
Y a,c=0 ⊥⊥ Ca | A,L .

Positivity for all a ∈ {0, 1}:
P (C = 0 | L = l, A = a) > 0 whenever P (L = l, A = a) > 0 ,

P (A = a|L = 0) > 0 whenever P (L = l) > 0.

The identification formula are identical to the one in Exercise 1(c).

Exercise 3 (Identification with hidden variables). Consider another example of a sequen-
tially randomized experiments, where the following measured variables are temporally (and
topologically) ordered from left to right 〈A0, L, A1, Y 〉, and any variable can depend on any
other variable measured in its past.1

1The motivation is to show that we can identify causal effects in the presence of unmeasured variables.
This follows straightforwardly from the identification theorem, which says that causal estimands are equal
to the g-formula under certain conditions (positivity, conditional exchangeability and consistency). The idea
is to check this manually in two special cases without using the identification theorem. As you can see, even
these simple cases require some uses of algebra and independencies.
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A0 A1

L

Y

Gc

A0 A1

L

Y

H

GH

A0 A1

L

Y

H1 H2

GH1,H2

(a) Draw the SWIG Gc(a0, a1). By assessing the conditional exchangeability assumptions
for every path between treatments A0, A

a0
1 and outcome Y a0,a1 , convince yourself that

Gc(a0, a1) satisfies the conditional exchangeability conditions

Y a0,a1 ⊥⊥ A0 ,

Y a0,a1 ⊥⊥ Aa0
1 | A0, L

a0 .

Use these conditions to show that

P (Y a0,a1 = y) =
∑
l

P (y | a0, a1, l)p(l | a0) .(1)

(b) Suppose next that there is a common cause H of L and Y . Draw the SWIG GH(a0, a1).
Convince yourself that it satisfies the conditional exchangeability conditions

Y a0,a1 ⊥⊥ A0 ,

Y a0,a1 ⊥⊥ Aa0
1 | A0, L

a0 , H .

Using these conditions, show that

P (Y a0,a1 = y) =
∑
l

∑
h

P (y | a1, a0, l, h)p(l | a0, h)p(h) .

(c) Draw the SWIG GH1,H2(a0, a1) and convince yourself that it satisfies the conditional
exchangeability conditions

Y a0,a1 ⊥⊥ A0 | H1 ,

Y a0,a1 ⊥⊥ Aa0
1 | A0, L

a0 , H1, H2 .

Using these conditions, show that

P (Y a0,a1 = y) =
∑
l

∑
h1

∑
h2

p(y | a1, a0, l, h1, h2)p(l | h1, h2, a0)p(h1)p(h2) .

(d) By manipulating the conditional probabilities on the RHS of parts (b) and (c), show
that both the right hand sides are equal to Eq. 1. Deduce that it is not necessary to
measure H (or conversely H1 and H2) in order to identify E[Y a0,a1 ].2

2More broadly, it is not necessary to measure all causes of all variables in a causal model in order to
identify causal effect, if positivity, conditional exchangeability and consistency hold. This is an important
result, which tells us that we can study isolated parts of complex systems without knowing the full causal
structure.
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Hint: Use the laws of probability and independencies in the graphs GH and GH1,H2 in
order to express RHS on the form

RHS(b) =
∑
l

∑
h

P (y, h | a0, a1, l)p(l | a0)

and
RHS(c) =

∑
l

∑
h1

∑
h2

P (y, h1, h2 | a0, a1, l)p(l | a0)

in order to marginalize out the hidden variables by summing over them.
(e) Do the graphs in (b) and (c) satisfy the exchangeability conditions in part (a) (reproduced

below)?
Y a0,a1 ⊥⊥ A0 ,

Y a0,a1 ⊥⊥ Aa0
1 | A0, L

a0 .

Solution:
In what follows, we will use (· ⊥⊥ · | ·)G to denote a conditional independence evalu-

ated in a DAG, in order to distinguish it from a conditional independence evaluated in the
corresponding SWIG.
(a) The SWIG Gc(a0, a1) is shown below. The exchangeability conditions are satisfied be-

A0 a0 Aa0
1 a1

La0

Y a0,a1

Gc(a0, a1)

cause there are no opens paths between Y a0,a1 and A0, or between Y a0,a1 and Aa0
1 condi-

tional on La0 , A0. We thus have that

P (Y a0,a1 = y)
Y a0,a1⊥⊥A0= P (Y a0,a1 = y | A0 = 0)

LOTP
=

∑
l

P (Y a0,a1 = y | A0 = a0, L
a0 = l)P (La0 = l | A0 = a0)

Y a0,a1⊥⊥A
a0
1 |La0 ,A0
=

∑
l

P (Y a0,a1 = y | Aa0
1 = a1, A0 = a0, L

a0 = l)P (La0 = l | A0 = a0)

consistency
=

∑
l

p(y | a1, a0, l)p(l | a0) .

(b) The SWIG GH(a0, a1) is shown below. The exchangeability conditions are satisfied be-
cause there are no opens paths between Y a0,a1 and A0, or between Y a0,a1 and Aa0

1 condi-
tional on La0 , A0, H. We thus have that

P (Y a0,a1 = y)
Y a0,a1⊥⊥A0= P (Y a0,a1 = y | A0 = 0)
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A0 a0 Aa0
1 a1

La0

Y a0,a1

H

GH(a0, a1)

LOTP
=

∑
h

P (Y a0,a1 = y | A0 = a0, H = h)P (H = h | A0 = a0)︸ ︷︷ ︸
(H⊥⊥A0)G

= P (H=h)

LOTP
=

∑
l

∑
h

P (Y a0,a1 = y | L = l, A0 = a0, H = h)

× P (L = l | A0 = a0, H = h)P (H = h)

Y a0,a1⊥⊥A
a0
1 |A0,H,La0

=
∑
l

∑
h

P (Y a0,a1 = y | Aa0
1 = a1, L = l, A0 = a0, H = h)

× P (L = l | A0 = a0, H = h)P (H = h)

consistency
=

∑
l

∑
h

P (y | a1, a0, l, h)p(l | a0, h)p(h) .

(c) The SWIG GH1,H2(a0, a1) is shown below. The exchangeability conditions are satisfied

A0 a0 Aa0
1 a1

La0

Y a0,a1

H1 H2

GH1,H2(a0, a1)

because there are no opens paths between Y a0,a1 and A0 conditional on H1, or between
Y a0,a1 and Aa0

1 conditional on La0 , A0, H1, H2. We thus have that

P (Y a0,a1 = y)
LOTP
=

∑
h1

P (Y a0,a1 = y | H1 = h1)P (H1 = h1)

Y a0,a1⊥⊥A0|H1
=

∑
h1

P (Y a0,a1 = y | A0 = a0, H1 = h1)P (H1 = h1)

LOTP
=

∑
h2

∑
h1

P (Y a0,a1 = y | H2 = h2, A0 = a0, H1 = h1)
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× P (H2 = h2 | A0 = a0, H1 = h1)P (H1 = h1)

LOTP
=

∑
l

∑
h2

∑
h1

P (Y a0,a1 = y | La0 = l, H2 = h2, A0 = a0, H1 = h1)

P (La0 = l | H2 = h2, A0 = a0, H1 = h1)

× P (H2 = h2 | A0 = a0, H1 = h1)︸ ︷︷ ︸
(H2⊥⊥(H1,A0))G

= P (H2=h2)

P (H1 = h1).

Finally, using Y a0,a1 ⊥⊥ Aa0
1 | H2, H1, L

a0 , A0, this is equal to∑
l

∑
h2

∑
h1

P (Y a0,a1 = y | Aa0
1 = a1, L

a0 = l, H2 = h2, A0 = a0, H1 = h1)

P (La0 = l | H2 = h2, A0 = a0, H1 = h1)

× P (H2 = h2)P (H1 = h1)

consistency
=

∑
l

∑
h1

∑
h2

p(y | a1, a0, l, h1, h2)p(l | h1, h2, a0)p(h1)p(h2) .

(d) We start with GH :

p(l | h, a0)p(h)
(H⊥⊥A0)G

= p(l | h, a0)p(h | a0)
= p(l, h | a0)
= p(h | a0, l)p(l | a0)
(H⊥⊥A1|L,A0)G

= p(h | a1, a0, l)p(l | a0).

Plugging this into the identification formula in part (a) gives

P (Y a0,a1 = y) =
∑
l

∑
h

p(y | a1, a0, l, h)p(h | a1, a0, l)p(l | a0)

=
∑
l

∑
h

p(y, h | a0, a1, l)p(l | a0)

=
∑
l

P (y | a0, a1, l)p(l | a0) .

For GH1,H2 , we begin by using graph independencies to show that

P (Y a0,a1 = y) =
∑
l

∑
h1

∑
h2

p(y | a1, a0, l, h1, h2)p(l | h1, h2, a0)p(h1)p(h2)

(Y⊥⊥L|A1,A0,H1,H2)G
=

∑
l

∑
h1

∑
h2

p(y | a1, a0, h1, h2)p(l | h1, h2, a0)p(h1)p(h2)

(Y⊥⊥H1|A1,A0,H2)G
=

∑
l

∑
h1

∑
h2

p(y | a1, a0, h2)p(l | h1, h2, a0)p(h1)p(h2) .
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Next, we marginalize over L,H1 and subsequently re-introduce them with different
conditioning sets:3

P (Y a0,a1 = y) =
∑
h2

p(y | a1, a0, h2)p(h2)
∑
h1

p(h1)
∑
l

p(l | h1, h2, a0)︸ ︷︷ ︸
=1

=
∑
h2

p(y | a1, a0, h2)p(h2)
∑
h1

p(h1)︸ ︷︷ ︸
=1

=
∑
h2

p(y | a1, a0, h2)p(h2)

=
∑
h2

p(y | a1, a0, h2)p(h2)
∑
h1

p(h1 | a0, h2)︸ ︷︷ ︸
=1

=
∑
h2

p(y | a1, a0, h2)p(h2)
∑
h1

p(h1 | a0, h2)
∑
l

p(l | h1, h2, a0)︸ ︷︷ ︸
=1

=
∑
l

∑
h1

∑
h2

p(y | a1, a0, h2)p(h2)p(h1 | a0, h2)p(l | h1, h2, a0)

(H2⊥⊥A0)G
=

∑
l

∑
h1

∑
h2

p(y | a1, a0, h2)p(l | h1, h2, a0) p(h1 | a0, h2)p(h2 | a0)︸ ︷︷ ︸
=p(h1,h2|a0)

.

Using (Y ⊥⊥ L | A1, A0, H1, H2)G and (Y ⊥⊥ H1 | A1, A0, H2)G as we did above, we can
re-introduce L and H1 into the conditioning set for Y :

P (Y a0,a1 = y) =
∑
l

∑
h1

∑
h2

p(y | a1, a0, h1, h2, l)p(l | h1, h2, a0)p(h1, h2 | a0)

=
∑
l

∑
h1

∑
h2

p(y | a1, a0, h1, h2, l)p(l, h1, h2 | a0)

=
∑
l

∑
h1

∑
h2

p(y | a1, a0, h1, h2, l)p(h1, h2 | a0, l)p(l | a0)

((H1,H2)⊥⊥A1|A0,L)G
=

∑
l

∑
h1

∑
h2

p(y | a1, a0, h1, h2, l)p(h1, h2 | a0, a1, l)p(l | a0)

=
∑
l

∑
h1

∑
h2

p(y, h0, h1 | a1, a0, l)p(l | a0)

=
∑
l

p(y | a1, a0, l)p(l | a0) .

3There is also a simpler solution: first marginalize over L andH1, then re-introduce L using the conditional
probability

∑
l p(l | a0, h2) (which is equal to 1) and finally re-introduce L into the conditioning set for Y .

The resulting identification formula is identical to RHS(b) with H replaced by H2. From here, we can prove
the desired equality in the same way as for GH , using the corresponding graphical independencies.
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(e) Yes, the graphs in (b) and (c) satisfy the exchangeability conditions in part (a), and are
thus identified by the g-formula in part (a).
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