EXERCISES FOR RANDOMIZATION AND CAUSATION (MATH-336)

EXERCISE SHEET 6

Exercise 1 (Censoring). Consider the DAG and SWIG below, reproduced from the lectures.
Let A,C,Y € {0,1} be indicators of treatment, loss to follow-up and outcome respectively.

(a) Give one English sentence that explains the interpretation of E[Y**=%. Can we identify
E[Y®*=1] from the observed data distributions?
(b) Write down the positivity and conditional exchangeability assumption required to iden-
tify E[Y+<=0].
(c) Find an identification formula for E[Y%<=°].
Solution:

(a) E[Y*“=0] is the expected (counterfactual) outcome under an intervention which sets
treatment A to a and eliminates loss to follow-up (i.e. sets C' to 0). In general, we
cannot say anything about E[Y““=!], because we do not observe individuals after they
are lost to follow-up.

Parts (b) and (c) are special cases of Exercise 2(e) of Exercise Sheet 5 with Ly =0, Ag = A
and Al =C.

(b) Conditional exchangeability for all a € {0,1}:
Yoo oA,
Yyee=0 | C*| AL .
Positivity for all a € {0, 1}:
P(C=0|L=1,A=a)>0 whenever P(L=1,A=a)>0,
P(A=a)>0.
(c) From Exercise 2(e) of Exercise Sheet 5, we know that

Ey*="] =) E[Y |A=0a,C=0,L=1P(L=1).

whenever consistency, conditional exchangeability and positivity hold.
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Exercise 2 (Imperfect adherence). Consider a randomized trial where patients are assigned
to one of two treatments R € {0,1} by randomization (flipping an unbiased coin) but do
not necessarily adhere to their assigned treatment, such that their observed treatment level
A € {0,1} may differ from R. Let L be a baseline covariate and let Y be the outcome.
Suppose that all variables are binary, and assume that the causal model in the DAG and
corresponding SWIG below are valid (The graphs are reproduced from lectures).

S oS

(a) (i) Write down an estimand for the per protocol effect (causal effect of A on V). Write
down the exchangeability conditions which allow us to identify the per protocol
effect in a study with imperfect adherence.

(ii) Find an identification formula for this causal effect.

(b) (i) Write down an estimand for the intention-to-treat effect (the causal effect of R
on Y'). Write down the positivity and conditional exchangeability conditions which
allow us to identify the intention-to-treat effect in a study with imperfect adherence
(here, we assume no censoring)? Compare this to your answer in part (a)-(i)

(ii) Find an identification formula for this causal effect.

Next, we will consider a setting with imperfect adherence and losses to follow-up, depicted
in the following DAG:

~_ 7

g

(c) Write down the estimand for the causal effect of A on Y if we were to intervene to
eliminate loss to follow-up, and draw the SWIG corresponding to this estimand. Write
down the positivity and conditional exchangeability conditions which allow us to identify
this estimand, and find an identification formula for this estimand.

Solution:
(a) (i) The estimand is E[Y“].
Conditional exchangeability and positivity for all a € {0, 1}:
Y*LA|L,

P(A=a|L=1)>0 whenever P(L>1)>0.
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(ii) The identification formula is given by

EY =Yy PV =y) " E"Y ">y P(Y =y | L=1)P(L=1)
CEESTS Ny P =y A=a, L=D)P(L=1)

CEMYNTEY [A=a,L=0P(L=1).
!

(b) (i) The estimand is given by E[Y"]. We only require Y 1L R and P(R =r) > 0 for all
r € {0,1} to identify E[Y"]. This is ensured to hold when R is randomized (assigned
by flipping a coin), whereas Y* 1. A | L is a strong assumption which requires
detailed knowledge about the causes of failing to adhere to assigned treatment.

(i) E[Y"| "= EYT | R=1] ="V E[Y | R =1].
(c) The estimand is given by E[Y %Y and the desired SWIG G(a,c = 0) is given below.
The identification conditions are :

Conditional exchangeability for all a € {0, 1}:
yee=0 1 A | L,
ye=0 | C*| AL .
Positivity for all a € {0, 1}:
P(C=0|L=1,A=a)>0 whenever P(L=1,A=a)>0,
P(A=a|L=0)>0 whenever P(L=1)>0.
The identification formula are identical to the one in Exercise 1(c).
Exercise 3 (Identification with hidden variables). Consider another example of a sequen-
tially randomized experiments, where the following measured variables are temporally (and

topologically) ordered from left to right (Ag, L, A;,Y’), and any variable can depend on any
other variable measured in its past|

IThe motivation is to show that we can identify causal effects in the presence of unmeasured variables.
This follows straightforwardly from the identification theorem, which says that causal estimands are equal
to the g-formula under certain conditions (positivity, conditional exchangeability and consistency). The idea
is to check this manually in two special cases without using the identification theorem. As you can see, even
these simple cases require some uses of algebra and independencies.
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(a) Draw the SWIG G.(ag,a;). By assessing the conditional exchangeability assumptions
for every path between treatments Ay, A]° and outcome Y ** convince yourself that
G.(ao, ay) satisfies the conditional exchangeability conditions

yawu | Ay,
yaoar | AT | Ag, L% .
Use these conditions to show that
(1) Py on =y) = ZP(ZJ | ao, a1, 1)p(l | ao) -
1

(b) Suppose next that there is a common cause H of L and Y. Draw the SWIG Gg(ag, a1).
Convince yourself that it satisfies the conditional exchangeability conditions

ywer | A
ywar | A% | Ay L%, H |

Using these conditions, show that

P(Y®™™ =y)=>">" Py | ai,a0,1,h)p(l | ag, h)p(h) .

(c) Draw the SWIG Gy, m,(ap,a1) and convince yourself that it satisfies the conditional
exchangeability conditions

yaoar || Ao | H1 s
yaoer || Atllo ‘ Ao,LaO, Hl, HQ .
Using these conditions, show that
PY™™ =y)=>"3 "> "p(y | ar, a0, 1, ha, ha)p(l | hy, ha, ag)p(h)p(ha) .
I hi ho

(d) By manipulating the conditional probabilities on the RHS of parts (b) and (c), show
that both the right hand sides are equal to Eq. [l Deduce that it is not necessary to
measure H (or conversely H; and H,) in order to identify E[Y0a]P]

2More broadly, it is not necessary to measure all causes of all variables in a causal model in order to
identify causal effect, if positivity, conditional exchangeability and consistency hold. This is an important
result, which tells us that we can study isolated parts of complex systems without knowing the full causal
structure.
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Hint: Use the laws of probability and independencies in the graphs Gy and Gp, g, in
order to express RHS on the form

RHS ) = ZZP(y, h | ag, a1, )p(l | ag)
Ik

and
RHS(C) = Z Z Z P(ya h17 h? ’ Gp, a1, l)p(l | aO)
I hi he
in order to marginalize out the hidden variables by summing over them.
(e) Do the graphs in (b) and (c) satisfy the exchangeability conditions in part (a) (reproduced
below)?

Yy | Ay,
yeoar | A0 | Ag, L .
Solution:
In what follows, we will use (- 1L - | -)g to denote a conditional independence evalu-

ated in a DAG, in order to distinguish it from a conditional independence evaluated in the
corresponding SWIG.

(a) The SWIG G.(ag, a;) is shown below. The exchangeability conditions are satisfied be-

Ge(ap, ar)

cause there are no opens paths between Y ** and Ay, or between Y% and AJ° condi-
tional on L% Ay. We thus have that

P(yao,al — y) yeoi Lo P(Yao’al =Y ‘ Ag = O)
LO:TP ZP(YGO’(H =y | AO — ao,LaO — l)P(LaO — l ‘ AO = CLO)
l

ag,aq a0 ra
TERELEACST pry e — g | A® = ay, Ag = ag, L% = ))P(L* =1 | Ay = a)
l

consistenc
=1 Zp(y | a17a07l)p(l | (10) :
l

(b) The SWIG Gp(ag, a1) is shown below. The exchangeability conditions are satisfied be-
cause there are no opens paths between Y% and Ay, or between Y *-% and A{° condi-
tional on L%, Ay, H. We thus have that

P(y@m = y) YUEH pryaen — | A) = 0)
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(c) The SWIG Gy, m,(ap,a1) is shown below. The exchangeability conditions are satisfied

QHI,HQ (a(), al)

because there are no opens paths between Y% and Ay conditional on H;, or between
Y@@ and AJ° conditional on L, Ay, Hy, Hy. We thus have that

P(Yao’al = y) LO:TP ZP(YGO#M =y | Hl = hl)P(Hl = hl)

hi1
Yao’aliA(J'Hl ZP(YaO,al =y | AO = ay, Hl = hl)P(Hl = hl)
ha
PSS Py — g |y =y Ay = i = )
ha  hi

6



X P(nghg | AOI(ZQ,Hl :hl)P(HI :h1>
LOTPZZZP YOu =y | L% =, Hy = hy, Ay = ag, Hy = hy)

ha  hp
P(Lao = | HQZhQ,A():CL(),Hl :hl)
X\P(szhg|A0:a,0,H1:h1)P<H1:h1).

(HQJL(H_LAO))QP

(H2=h2)

Finally, using Y0 1 A{° | Hy, Hy, L%, Ay, this is equal to

ZZZP Yaoal_y|A _ahL“O:l H, = h2,A0 ao,lehl)

ha  hi
P(L™ =1| Hy = hy, Ay = ag, Hy = hy)
x P(Hy = hy) P(H, = hy)

con51stency ZZZP |a1,a0,l,h1,h2) (l | h1>h2,a0> (hl) (h2) :

(d) We start with Gp:

(HLAo)g

p(L |y ao)p(h) p(| by a)p(h | ao)

=p(l, 1 | ao)
=p(h | ao, )p(l | ao)

(H1LA{|L,Ap)
= p(h \ al,ao,l)p(l | ao)-

Plugging this into the identification formula in part (a) gives

PYaoal_y ZZpy|a1,ao,l,h) (h’@baO» )p(”ao)

= ZZP (y, h | ao, ar, )p(l | ao)
—ZP | ag, ar, )p(l | ao) -
For Gy, m,, we begin by using graph independencies to show that

P yon = y Zzzp Yy | a17a07l7h17h2> (l ’ h17h27a’0) (hl) (hZ)
1 2

Y LL|Ay,Ag,Hy, H
(b Ao o f2)o ZZZP(?/ | a1, ag, b1, ho)p(l | ha, ha, ao)p(hi)p(he)

Il hi1 ho

Y1 H|A1,A0,H
( 1] 41,40 2)g Zzzp(y | al,ag,hg)p(l | hl,hQ,ao)p(hl)p(hg) .

Il hi1 he
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Next, we marginalize over L, H; and subsequently re-introduce them with different
conditioning sets{]

P(yao,al — y) — Zp(y | ai, agp, h2)p(h2) Zp(hl) Zp(l | hl; h?; aO)
ha h !

J/

-~

=1

=" ply | ar a0, ha)p(ha) 3 ()

h1
——

= Zp(y | a1, ag, ha)p(hs)

ho

= Zp(y | ai, ag, hz)p(hz) Zp<h1 | o, hQ)

h2 hl

J/

-~

=1

= Zp(y | a1, ao, ha)p(ho) Zp(hl | ao, h2) Zp(l | hu1, ho,ao)
ha ha l

—ZZZp | a1, ao, ha)p(ha)p(hy | ao, ha)p(l | hl,hg,%)
h1  ho
HJLA
=Ry ZZZP y | a1, a0, ho)p(l | h17h2,(10) p(ha | a07h2) (hs | @02 .
h1  ho

(hl,h2|a0)

Using (Y L L | Ay, Ao, Hi, Ho)g and (Y L Hy | Ay, Ao, Ha)g as we did above, we can
re-introduce L and H; into the conditioning set for Y:

Py ot =y) ZZZP y | a1, a0, b, ho, )p(L | by, ho, ao)p(ha, e | ao)

hi  h2

= ZZZP | a1, ag, ha, ho, D)p(l, ha, o | ao)
= ZZZP y | a1, a0, b1, ha, D)p(ha, ha | ag, p(l | ao)

h1 ho
((Hl,HQ)JL_Al [Ao,L)

ZZZP y ’ al’a()?hlvh%l)p(hl»hQ | Clo,(h,l)p(l | ao)
= ZZZP Y, h’O;hl | ai, agp, )p(l ’ (10)

hi  hz

= ZP \ al,CLo, (l | ao) .

3There is also a simpler solution: first marginalize over L and Hj, then re-introduce L using the conditional
probability >, p(l | ao, he) (which is equal to 1) and finally re-introduce L into the conditioning set for Y.
The resulting identification formula is identical to RHS;y with H replaced by Hz. From here, we can prove
the desired equality in the same way as for G, using the corresponding graphical independencies.
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(e) Yes, the graphs in (b) and (c) satisfy the exchangeability conditions in part (a), and are
thus identified by the g-formula in part (a).

REFERENCES



	Exercise Sheet 6
	References

