
EXERCISES FOR RANDOMIZATION AND CAUSATION (MATH-336)

Exercise Sheet 2

Exercise 1 (Conditional independence. Inspired by Jamie Robins’ lectures). Prove the
following identities for independence, assuming that X, Y, Z,W are discrete:
(a) Symmetry: X ⊥⊥ Y | Z ⇐⇒ Y ⊥⊥ X | Z .
(b) Decomposition: X ⊥⊥ Y,W | Z =⇒ X ⊥⊥ Y | Z .
(c) Weak Union: X ⊥⊥ Y,W | Z =⇒ X ⊥⊥ Y | Z,W .
(d) Contraction: (X ⊥⊥ W | Y, Z) and (X ⊥⊥ Y | Z) =⇒ (X ⊥⊥ Y,W | Z) .

Solution:
(a)

X ⊥⊥ Y | Z ⇐⇒ f(x | z)f(y | z) = f(x, y | z)

= f(y | z)f(x | z)⇐⇒ Y ⊥⊥ X | Z .

(b)

X ⊥⊥ Y,W | Z ⇐⇒ f(x, y, w | z) = f(x | z)f(y, w | z) ,

so summing over w gives

f(x, y | z) = f(x | z)f(y | z)⇐⇒ X ⊥⊥ Y | Z .

(c) X ⊥⊥ Y,W | Z implies that

f(x, y, w | z) = f(x | z)f(y, w | z) .

Multiplying both sides by f(z)
f(w,z)

, we find that

f(x, y | w, z) = f(x | z)f(y | w, z) .

Next, decomposition of X ⊥⊥ Y,W | Z implies X ⊥⊥ W | Z and therefore

f(x, y | w, z) = f(x | w, z)f(y | w, z)⇐⇒ X ⊥⊥ Y | W,Z .

(d) X ⊥⊥ W | Y, Z implies that

f(x,w | y, z) = f(x | y, z)f(w | y, z)
X⊥⊥Y |Z

= f(x | z)f(w | y, z) .

Next, expanding LHS as f(x,w | y, z) as f(x | w, y, z)f(w | y, z), we get that

f(x | w, y, z) = f(x | z)⇐⇒ X ⊥⊥ Y | Z .

�
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Exercise 2 (Crossover experiments. Based on Fine Point 2.1 and Fine Point 3.2 [1]). In
crossover experiments, individuals are observed during two or more periods. For simplicity,
consider two periods, t = 0 and t = 1. An individual receives a different treatment At in each
period t. Let Y a0,a1

1 be the deterministic counterfactual outcome1 at t = 1 if the individual
is treated with A0 = a0 at t = 0 and A1 = a1 at t = 1. Let Y a0

0 be defined similarly for t = 0.
The individual causal effect Y at=1

t − Y at=0
t can be identified if the following three conditions

hold:
i) no carryover effect of treatment: Y a0,a1

t=1 = Y a1
t=1 for all a0 ∈ {0, 1},

ii) the individual causal effect is constant in time: Y at=1
t −Y at=0

t = α for all t ∈ {0, 1}, and
iii) the counterfactual outcome under no treatment does not depend on time: Y at=0

t = β
for all t ∈ {0, 1}.

Here, α and β are random variables that may differ between individuals.
Answer the following:

(a) Do any of the conditions i)-iii) hold by design in a randomized trial?
(b) For each of the conditions i)-iii), suggest a situation where the condition fails.
(c) Suppose individuals in the study are assigned to one of two crossover treatment regimes:

(A0, A1) = (0, 1) or (1, 0). By assuming conditions i)-iii), show that the identification
formula for the individual causal effect Y at=1

t −Y at=0
t at all t ∈ {0, 1} in terms of observed

outcomes Yt is
α = (Y1 − Y0)A1 + (Y0 − Y1)A0 .

(d) Suppose that i)-ii) hold but iii) is violated and that Y a1=0
1 −Y a0=0

0 = R. Show that under
randomization of treatments At, where individuals are randomized to either (A0, A1) =
(0, 1) with probability 1/2 or (A0, A1) = (1, 0) with probability 1/2, the average causal
effect E[Y at=1

t − Y at=0
t ] at all times t ∈ {0, 1} is identified by

E[α] = E[(Y1 − Y0)A1 + (Y0 − Y1)A0] .

(e) Suppose now that treatments are randomized as in (d), but that only condition i) holds.
Let αt = Y at=1

t − Y at=0
t for t ∈ {0, 1}. Show that the time-average of the average causal

effect is identified by
1

2
(E[α0] + E[α1]) = E [(Y0 − Y1)A0 + (Y1 − Y0)A1] .

Solution:
(a) No, conditions i)-iii) are properties of the treatment A and outcome Y that are not

guaranteed to hold by randomly assigning A.
(b) Condition i) fails if the treatment has long-term effects on the outcome. For example,

sustained smoking increases the risk of lung cancer even after the individual has quit
smoking. ii) fails if Y is tumor growth, A is a chemotherapeutic drug and the tumor
becomes resistant to the drug after some time. iii) fails if Y is an indicator function of
survival at time t, and A is aspirin in patients with coronary artery disease. Because
treatment with aspirin reduces the risk of heart attacks in these patients, treatment also
increases the chances of survival.

1Some authors denote the counterfactuals by Y a0
i , that is, using subscripts i, when discussing individuals

causal effects, to highlight that Y a0
i may differ between individuals. To simplify the notation, we have

omitted the subscript.
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(c) An individual can either receive treatment (A0, A1) = (0, 1) or (1, 0), as the combinations
(1, 1) and (0, 0) are, by design, not assigned. The identification formula for the individual
causal effect will be different in each case:

α
ii)
= Y at=1

t − Y at=0
t for all t ∈ {0, 1}

= Y a0=1
0 − Y a0=0

0

= Y a0=1
0 − Y a1=0

1 −
(
Y a0=0
0 − Y a1=0

1

)︸ ︷︷ ︸
iii)
=β−β=0

i)
= Y a0=1

0 − Y a0=1,a1=0
1

consistency
= Y0 − Y1 if (A0, A1) = (1, 0) .(1)

Similarly,

Y at=1
t − Y at=0

t

ii)
= Y a1=1

1 − Y a1=0
1

= Y a1=1
1 − Y a0=0

0 −
(
Y a1=0
1 − Y a0=0

0

)︸ ︷︷ ︸
iii)
=β−β=0

i)
= Y a0=0,a1=1

1 − Y a0=0
0

consistency
= Y1 − Y0 if (A0, A1) = (0, 1) .(2)

We get the identification formula by combining Eqs. 1 and 2, letting A0 and A1 play the
role of indicator functions.

(d) Proceeding as in part (c),

α
ii)
= Y a0=1

0 − Y a0=0
0

= Y a0=1
0 − Y a1=0

1 −
(
Y a0=0
0 − Y a1=0

1

)︸ ︷︷ ︸
=−R

.

By consistency,

Y a0=1
0 − Y a1=0

1 = Y0 − Y1 if (A0, A1) = (1, 0) ,

and thus have that

α = Y0 − Y1 +R if (A0, A1) = (1, 0) .(3)

Likewise,

α
ii)
= Y a1=1

1 − Y a1=0
1

= Y a1=1
1 − Y a1=0

0 −
(
Y a1=0
1 − Y a0=0

0

)︸ ︷︷ ︸
=R

and we therefore have

α = Y1 − Y0 −R if (A0, A1) = (0, 1) .(4)
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Then,

E[(Y0 − Y1)A0 + (Y1 − Y0)A1] = E[(Y0 − Y1)A0] + E[(Y1 − Y0)A1] .

We evaluate each of the terms on the RHS separately,

E[(Y0 − Y1)A0] = E {E[(Y0 − Y1)A0 | A0)]}
= E {A0 · E[(Y0 − Y1) | A0)]}

=
∑
a0

p(a0)a0
∑
y0

∑
y1

p(y0, y1 | a0)(y0 − y1)

= P (A0 = 1)E[Y0 − Y1|A0 = 1]

Eq. 3
= P (A0 = 1)(E[α]− E[R]) .

Using analogous arguments, we can show that

E[(Y1 − Y0)A1]
Eq. 4
= P (A1 = 1)(E[α] + E[R]).

Because P (A0 = 1) = P (A1 = 1) = 1
2
, we obtain the desired identification formula.

(e) Arguing as in (d), we find that

α0 = Y0 − Y1 +R if (A0, A1) = (1, 0) ,

α1 = Y1 − Y0 −R if (A0, A1) = (0, 1) .

The final result follows by an argument similar to the one in part (d).

Exercise 3 (Collapsibility and odds ratios. Based on Fine Point 4.3 [1, 2, 3]). Consider
a randomized A ∈ {0, 1}, assigned by flipping an unbiased coin, and outcome Y ∈ {0, 1}.
Suppose there exist subgroups (for example women and men) defined by the covariate V ∈
{0, 1} with positivity for A, i.e. satisfying

P (A = a | V = v) > 0 for all a ∈ {0, 1} whenever P (V = v) > 0 .(5)

(a) Does Y a ⊥⊥ A hold? Does Y a ⊥⊥ A | V = v hold for all v = 0, 1?
(b) Using the exchangeability condition Y a ⊥⊥ A, prove that the following causal (counter-

factual) estimand within subgroups, P (Y a = y | V = v), is identified by

P (Y a = y | V = v) = P (Y = y | A = a, V = v) .

(c) By rewriting the marginal relative risk (RR) as a weighted average of the conditional
relative risks (RRv), prove that any probability law P (A = a, V = v, Y = y) satisfying
the positivity conditions

P (Y = 1 | A = 0) > 0

and Eq. 5 also satisfies

RR ∈
[
min
v

(RRv),max
v

(RRv)
]
,

where

RR =
P (Y a=1 = 1)

P (Y a=0 = 1)
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and

RRv =
P (Y a=1 = 1 | V = v)

P (Y a=0 = 1 | V = v)
.

In other words, the marginal risk ratio lies in the range of the conditional relative risk
ratios.

(d) Show also that the marginal risk difference RD = P (Y a=1 = 1) − P (Y a=0 = 1) lies in
the range of the conditional risk differences

RDv = P (Y a=1 = 1 | V = v)− P (Y a=0 | V = v)

under the positivity condition in Eq. 5.
(e)* Find an example of a law P (A = a, Y = y, V = v) such that

ORv=1 = ORv=0 > OR,

where

ORv =
P (Y a=1 = 1 | V = v)

P (Y a=1 = 0 | V = v)

/
P (Y a=0 = 1 | V = v)

P (Y a=0 = 0 | V = v)

and

OR =
P (Y a=1 = 1)

P (Y a=1 = 0)

/
P (Y a=0 = 1)

P (Y a=0 = 0)
.

Present your answer in the form of a table with entries A × Y × V . Deduce that in
general we cannot write OR as a weighted sum of ORv with non-negative weights.

This property is referred to as the non-collapsibility of the odds ratio, and can be
seen as a consequence of Jensen’s inequality (an average over a non-linear function does
not equal the function evaluated on the average). Thus, reporting odds ratios as effect
measures arguably has undesirable features.

Solution:
(a) Because A is randomly assigned (unconditionally), Y a ⊥⊥ A and Y a ⊥⊥ A | V .2
(b) Using part (a),

P (Y a = y | V = v)
Y a⊥⊥A|V

= P (Y a = y | A = a, V = v)

=P (Y = y | A = a, V = v) ,

where we also used consistency and positivity.
(c) Using weights w(v) = P (Y = 1 | A = 0, V = v)P (V = v), which are well-defined by

positivity,

RR =

∑
v P (Y = 1 | A = 1, V = v)P (V = v)∑
v′ P (Y = 1 | A = 0, V = v′)P (V = v′)

=
∑
v

RRv ·
w(v)∑
v′ w(v′)

.

The marginal risk ratio lies in the range of the conditional risk ratios because any linear
combination of RRv with non-negative weights lies in [minv(RRv),maxv(RRv)]. �

(d) By taking the sum
∑

v P (V = v)×(·) over the identification formula in part (a), and using
identical reasoning to part (b), we get the corresponding result for the risk difference. �

2As we will see later in the course, A ⊥⊥ V | C for any pre-treatment variable C, because C occurs prior
to A and therefore cannot be a collider on the path A→ C ← Y a.
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(e)* An example of the desired probability law is shown in Table 1.

Table 1. Probability law of A, Y, V demonstrating non-collapsibility of the
odds ratio

V = 1 V = 0 Marginal
A = 1 A = 0 A = 1 A = 0 A = 1 A = 0

Y = 1 0.2 0.15 0.1 0.05 0.3 0.2
Y = 0 0.05 0.1 0.15 0.2 0.2 0.3
Risks 0.8 0.6 0.4 0.2 0.6 0.4
Risk differences 0.2 0.2 0.2
Risk ratios 1.33 2 1.5
Odds ratios 2.67 2.67 2.25

The fact that

OR /∈
[
min
v

(ORv),max
v

(ORv)
]

implies that OR cannot be expressed as a weighted average of ORv.

Exercise 4 (Positivity for standardization and IPW. Based on Technical Point 3.1 [1]).
Consider a binary treatment A, a discrete baseline covariates L and an outcome Y . In the
derivation of the weighted identification formula in the lectures, we showed that causal effect
could expressed as the contrast

E[Y a=1 − Y a=0] = E

[
I(A = 1)

π[A | L]
Y

]
− E

[
I(A = 0)

π[A | L]
Y

]
(6)

under the assumption of conditional exchangeability, consistency. and positivity. The posi-
tivity condition is

P (A = a | L = l) > 0 for all a ∈ {0, 1} whenever P (L = l) > 0 .

Next, we will consider what happens when positivity is violated. Suppose that there exists
some a∗, l such that P (A = a∗ | L = l) = 0 and P (L = l) > 0. Next, define Q(a) = {l :
P (A = a | L = l) > 0} to be the levels of L with positivity for treatment level a.

(a) Show that

E

[
I(A = a)Y

π[A | L]

]
= P (L ∈ Q(a))

∑
l∈Q(a)

E[Y | A = a, L = l]P (L = l | L ∈ Q(a)) .

(b) Explain why the naive contrast E
[
I(A=1)
π[A|L] Y

]
−E

[
I(A=0)
π[A|L] Y

]
no longer has a causal inter-

pretation under violation of positivity.

Solution:
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(a) Firstly, notice that π[A | L] cannot be zero,3 even under violation of positivity when
π[a | L] is zero. To see this, recall that π[A | L] is a random variable obtained by
evaluating the conditional distribution function π[a | l] := P (A = a | L = l) at the
random arguments A and L, i.e. for all ω ∈ Ω, and thus π[A,L](ω) = π[A(ω) | L(ω)].

Therefore, events of the form {A = a∗, L = l} do not contribute to the expectation in
Eq. 6. This allows us to rewrite Eq. 6 as

E

[
I(A = a)Y

π[A | L]

]
=
∑
ãly

P (Y = y, L = l, A = ã)
yI(ã = a)

π[ã | l]

=
∑
ã

∑
y

∑
l∈Q(a)

P (Y = y, L = l, A = ã)
yI(ã = a)

π[ã | l]
.

Next, we can expand the joint density as

P (Y = y, L = l, A = ã) = P (Y = y | A = ã, L = l)P (A = ã | L = l)P (L = l)

and thus obtain

E

[
I(A = a)Y

π[A | L]

]
=
∑
ã

∑
y

∑
l∈Q(a)

yI(a = ã)
1

P (A = ã | L = l)

× P (Y = y | A = ã, L = l)P (A = ã | L = l)P (L = l)

=
∑
y

∑
l∈Q(a)

yP (Y = y | A = a, L = l)P (L = l)

=
∑
l∈Q(a)

E[Y | A = a, L = l]P (L = l)

=
∑
l∈Q(a)

E[Y | A = a, L = l]P (L = l, L ∈ Q(a))

= P (L ∈ Q(a))
∑
l∈Q(a)

E[Y | A = a, L = l]P (L = l | L ∈ Q(a)) .

(b) When positivity fails, Q(0) 6= Q(1), and therefore the contrast E
[
I(A=1)
π[A|L] Y

]
−E

[
I(A=0)
π[A|L] Y

]
compares different groups of individuals. Conversely, Q(0) = Q(1) when positivity holds,
and therefore the contrast is the average causal effect if exchangeability holds.
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