
RANDOMIZATION AND CAUSATION (MATH-336)

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

Midterm exam - solutions

Date: 14th of April, 2025
Time: 10:15–11:45

Name:

SCIPER:

INSTRUCTIONS TO CANDIDATES

• This midterm exam will contribute 20% to your final grade. To obtain the maxi-
mum number of points you should be clear about your reasoning and present your
arguments explicitly. You have 90 minutes to complete the exam.
• All that can be used for this exam is a pen. No notes, books, summaries, formula

collections or calculators are allowed. All questions should be answered.
• The finest enumerated item in each question will be marked on a scale of 0−2 points,

indicating an incorrect, partially correct and completely correct answer respectively
(half-points are not given). The exam has 3 questions with a total of 48 points.
• Write the answer to every question in the other booklet (midterm exam

- answers). Scrap paper will be provided for rough work, but only answers written
in the booklet will be marked.
• At the end of the exam, you will have to return everything : the booklet with the

questions, the booklet with your answers, and the scrap paper.

Mark question 1 (TOT: 12 points):

Mark question 2 (TOT: 14 points):

Mark question 3 (TOT: 22 points):
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Question 1.

Let X, V, L,A, Y be a set of discrete variables topologically ordered as (X, V, L,A, Y ).
You are given the following NPSEM-IE (non-parametric structural equation model with
independent errors) model:

X = fX(UX)

V = fV (UV )

L = fL(X, V, UL)

A = fA(X,UA)

Y = fY (A, V, L, UY )

where the UX , UV , UL, UA, UY are mutually independent error terms. We assume consistency
and positivity throughout the question.

(1) Draw the causal DAG G for the above causal model.
(2) Give the Markov factorization for the joint density of (X,V,L,A,Y) under the DAG

G.
(3) List all independencies (both unconditional and conditional) implied by the DAG

on Y . That is: write all independencies of the form Y ⊥⊥ N |T where N is a single
random variable, and T is a set of random variables (T could be empty).

(4) Draw the SWIG Ga corresponding to the intervention A = a.
(5) Re-write all structural equations above under an intervention that sets A = a.
(6) Is the expected potential outcome E[Y a] identifiable with the g-formula? If yes, give

an identification formula. Your expression should be minimal, in the sense that it
does not include any unnecessary variables. If not identified, explain why.
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Solutions:
(1) The causal DAG for the above causal model is:

A

X

L

V

Y

G

(2) The Markov factorization of the joint density is
p(x, v, l, a, y) = p(x)p(v)p(l|x, v)p(a|x)p(y|a, l, v)

(3) There is only one single independence condition implied on Y :
Y ⊥⊥ X|A,L, V

To see this, notice first that because there are direct arrows from A,L and V into Y ,
Y is not independent of any of A,L or V , neither unconditionally, nor conditionally.
Next, from the Markov factorization, we see that Y ⊥⊥ X|A,L, V . Because of the
path X → A → Y , A could not be removed from the conditioning set. Similarly,
because of the path X → L→ Y , L could not be removed from the conditioning set.
Finally, Y is not independent of X given A and L only because conditioning on the
collider L opens the path between X and Y through V . Consequently, V cannot be
removed from the conditioning.

Thus, the single independence condition that holds is

Y ⊥⊥ X|A, V, L

(4) The requested SWIG is:

A a

X

L

V

Y a

Ga

(5) Under the intervention A = a, the NPSEM-IE models become:
X = fX(UX)

V = fV (UV )

L = fL(X, V, UL)

Aa+ = a (A = a is also accepted.)
Y a = fY (a, V, L, UY )
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(6) Yes, E[Y a] is identifiable as:
E[Y a] = E[E[Y a|X]] (LOTE)

= E[E[Y a|X,A = a]] (Y a ⊥⊥ A|X)
= E[E[Y |X,A = a]] (Consistency)
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Question 2.

In this exercise, consider a randomized controlled trial investigating the effect of a vaccine
on the probability of contracting an infectious disease (for example, influenza or COVID-19).
Also, consider that there is a genetic predisposition that would protect patients from getting
the disease, regardless of whether they are vaccinated.

Specifically, let A ∈ {0, 1} be the binary treatment assignment (A = 1 is to get the
vaccine; A is randomized), Y be the binary outcome (Y = 1 is to have the disease in the
year following the vaccine), and T be a binary indicator of having the genetic predisposition
(T = 1 is to have the predisposition i.e to be immune to the disease, T is measured prior to
treatment assignment).

The assumptions for T can be written as:

(A1) : Pr(Y a=1 = 1|T = 1) = Pr(Y a=0 = 1|T = 1) = 0

(A2) : T a=1 = T a=0

We further assume that Pr(Y a=0 = 1) > 0, and 0 < Pr(T = 0) < 1, along with consis-
tency and positivity.

(1) Draw a DAG for this problem. Your DAG should include nodes for the variables A,
T and Y only, and should only include necessary edges.

(2) Comment briefly on the plausibility of the consistency assumption in this setting
(max 5 sentences).

(3) Causal Risk Ratio (CRR). In this question, we assume that the researchers are
interested in estimating the Causal Risk Ratio (CRR), defined as :

CRR =
Pr(Y a=1 = 1)

Pr(Y a=0 = 1)

We also define the Causal Risk Ratio in the non-immune subpopulation T = 0,
denoted as CRRT=0, as follows:

CRRT=0 =
Pr(Y a=1 = 1|T = 0)

Pr(Y a=0 = 1|T = 0)

(a) Is the CRR identified? If yes, derive an identification formula. If no, explain
why.

(b) Show that CRRT=0 = CRR.
(c) Now imagine the the genetic predisposition T is not measured. Is CRRT=0

identified? Explain in maximum 3 sentences.
(4) Now imagine that the researchers are instead interested in estimating the Average

Treatment Effect (ATE), defined as :

ATE = Pr(Y a=1 = 1)− Pr(Y a=0 = 1)

We also define the Conditional Average Treatment Effect in the non-immune subpop-
ulation T = 0, denoted as CATET=0, as follows:

CATET=0 = Pr(Y a=1 = 1|T = 0)− Pr(Y a=0 = 1|T = 0)
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(a) Is the ATE identified? If yes, derive an identification formula. If no, explain
why.

(b) Express CATET=0 as a function of the ATE and (potentially) some observed
parameters and discuss the relationship between CATET=0 and the ATE : is
CATET=0 >,=, or < ATE?
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Solutions:
(1) The DAG is :

A

T

Y

G′

(2) The consistency assumption requires two sub-assumptions to hold: (1) no multiple
versions of the treatment, and (2) no between-unit interference. While it is reason-
able to assume no multiple versions of the treatment, as long as there is only one
type of vaccine and the administration is similar for all individuals, there may be
between-unit interference. In fact, one patient receiving the vaccine may protect
other individuals from contracting the disease. In a randomized clinical trial, we gen-
erally assume that the number of participants is so small that it is very unlikely that
patients will interact with each other, making the consistency assumption plausible.

(3) (a) Yes, the CRR is identified. Indeed, Y a ⊥⊥ A = a in our setting (this can be read-
off from the transformation of the DAG G′ into a SWIG). From this, consistency,
and positivity, it is straightforward to show that:

CRR =
Pr(Y = 1|A = 1)

Pr(Y = 1|A = 0)

(b) We have that :

CRRT=0 =
Pr(Y a=1 = 1|T = 0)

Pr(Y a=0 = 1|T = 0)

=
Pr(Y a=1 = 1, T = 0)Pr(T = 0)

Pr(Y a=0 = 1, T = 0)Pr(T = 0)

=
Pr(Y a=1 = 1, T = 0)

Pr(Y a=0 = 1, T = 0)

=
Pr(Y a=1 = 1)− Pr(Y a=1 = 1, T = 1)

Pr(Y a=0 = 1)− Pr(Y a=0 = 1, T = 1)

=
Pr(Y a=1 = 1)− Pr(Y a=1 = 1|T = 1)Pr(T = 1)

Pr(Y a=0 = 1)− Pr(Y a=0 = 1|T = 1)Pr(T = 1)

=
Pr(Y a=1 = 1)

Pr(Y a=0 = 1)
(Pr(Y a = 1|T = 1) = 0)

= CRR,

which concludes the proof.
(c) Yes, CRRT=0 is identified by Pr(Y=1|A=1)

Pr(Y=1|A=0)
, since CRRT=0 = CRR and the CRR

is identified
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(4) (a) Yes, the ATE is identified as:
ATE = Pr(Y = 1|A = 1)− Pr(Y = 1|A = 0)

where we used Y a ⊥⊥ A = a, positivity, and consistency.
(b) Let a ∈ 0, 1. We have that :

Pr(Y a|T = 0) =
Pr(Y a = 1, T = 0)

Pr(T = 0)

=
Pr(Y a = 1)− Pr(Y a = 1, T = 1)

Pr(T = 0)

=
Pr(Y a = 1)

Pr(T = 0)
(by assumption (A1))

From that, we have :

CATET=0 =
Pr(Y a=1 = 1)

Pr(T = 0)
− Pr(Y a=0 = 1)

Pr(T = 0)

=
ATE

Pr(T = 0)

Thus, we proved that :

CATET=0 =
ATE

Pr(T = 0)

Since Pr(T = 0) < 1, CATET=0 > ATE.
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Question 3.

Motivation (not strictly needed to answer the question). Many treatments for
chronic diseases (e.g., diabetes, heart disease, cancer) must be taken continuously for years.
However, these treatments are often associated with many side effects. Patients struggling
with side effects may not be able to adhere to treatment. Non-adherence has implications for
the interpretation of causal effects. For these reasons, researchers are often interested in the
effectiveness of interventions that ensure adherence. However, it may be unrealistic to expect
study participants to adhere to a strict treatment strategy that requires continuous use of
treatment (perfect adherence). Other, more relaxed, adherence interventions are possible.
In this exercise, we explore possible definitions of interventions on adherence. For simplicity,
we will place ourselves in a setting with only two time points.

Notation and assumptions. Let A1, A2 be indicators of treatment at time points 1 and
2, respectively, Y be the outcome (measured after time 2), M is a set of measured covariates
at baseline, L1, L2 measured (and discrete) covariates at time point 1 and 2, respectively,
and UL is an unmeasured covariate. We assume that A1, A2 and Y are binary, and that
all other variables are discrete. We assume consistency for both static and dynamic time-
varying regimes. We assume the following topological order (UL,M,L1, A1, L2, A2, Y ) and
the following DAG (G1) throughout the question:

L1

A1

L2

A2 Y

M

UL

G1

(1) Perfect adherence. First, let’s consider a time-varying static strategy that sets
perfect adherence :
(a) Draw the SWIG G1(a1, a2) corresponding to the intervention that assigns A1 to

a1 and A2 to a2 (for perfect adherence, we would set both a1 and a2 to 1).

(b) Find sets of variables V and W such that the following exchangeability conditions
hold:

Y a1,a2 ⊥⊥ A1|V
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Y a1,a2 ⊥⊥ Aa1
2 |V,A1 = a1,W.

The sets V and W should be "minimal", in the sense that they should not con-
tain unnecessary variables. In addition, V and W should only contain variables
that are topologically ordered before A1 for V and before Aa1

2 for W .

(c) State the positivity condition(s) needed for identification.

(d) Derive an identification formula for E[Y a1,a2 ]. Your expression should be "min-
imal", in the sense that it should not contain unnecessary variables.

Perfect adherence may not be feasible for certain patients who struggle with side
effects. Researchers may be interested in strategies implementing relaxed version of
adherence. We will explore two families of such strategies.

(2) Stochastic strategies.
We now consider an alternative dynamic stochastic strategy, denoted as gπ and

defined as follows. At time point 1, patient is required to take treatment value a1 :
Agπ+

1 = a1. At time point 2, let X2 ∼ U(0, 1) be an exogenous randomly drawn value
from a standard uniform distribution and Let π : Lgπ

2 → (0, 1) be an investigator-
specified function of current covariate value. We set

Agπ+
2 =

{
1 if X2 ≤ π(Lgπ

2 )

0 otherwise
(1)

(a) Draw the dynamic SWIG G2(gπ) corresponding to the above intervention gπ.
Hint: you may want to introduce a node for X2.

(b) State sets of variables V2 and W2 such that the following exchangeability condi-
tions hold:

Y gπ ⊥⊥ A1|V2

Y gπ ⊥⊥ Agπ
2 |V2, A1 = a1,W2.

The sets V2 and W2 should be "minimal", in the sense that it should not
contain unnecessary variables. The sets should only contain variables that
are topologically ordered before A1 for V2 and before Agπ

2 for W2.
(c) What arrow could be removed from the DAG for E[Y gπ ] to be identified with

the extended g-formula? Give a single arrow (not a set of arrows).
(d) For this question and for the next question (2)(e), we assume that this arrow

was deleted from the DAG. Derive an identification formula for E[Y gπ ]. Your
expression should be "minimal", in the sense that it should not contain unnec-
essary variables. You do not have to state the required positivity assumptions
and you can assume that they hold.

(e) For this question, we set a1 = 1 and the function π to be constant equal to 1.
Prove that the identification formula you found in previous question reduces to
the identification formula you found in question (1)(d) with a1 = a2 = 1.

(3) Natural grace period strategies.
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Natural grace period strategies were proposed as another family of strategies. It
consists in allowing periods without treatment, as long as treatment breaks do not ex-
ceed a certain length of time. In this example, we allow one period of time maximum
without treatment. Specifically, we want to study a time-varying dynamic strategy
where treatment is assigned according to the decision rule g given by:

Ag+
1 = A1

Ag+
2 =

{
Ag

2 if Ag+
1 = 1

1 otherwise

In words, at time point 1, patients take treatment as they would naturally do. If
a patient did not take treatment at time point 1, then the patient is forced to take
treatment at time point 2. If the patient did take treatment at time point 1, the
patient takes treatment as he/she would naturally do at time point 2.
(a) Draw the dynamic SWIG G3(g) corresponding to the above intervention.

(b) Why can’t you use the same exchangeability conditions we discussed in the
lectures for the extended g-formula to identify E[Y g]?
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Solutions:

(1) Perfect adherence
(a) The desired SWIG is shown below :

L1

A1 a1

La1
2

Aa1
2 a2 Y a1,a2

M

UL

G(a1, a2)

(b) Using d-separation we can see from the graph that :
• (E1) : Y

a1,a2 ⊥⊥ A1|M . This is because paths from Y a1,a2 to A1 either go
from the constant intervened values a1 or a2; or through M which is not a
collider in any of the paths.
• Similarly, (E2) : Y

a1,a2 ⊥⊥ Aa1
2 |M ,A1 = a1. Indeed, conditioning on A1

could have open paths on which it is a collider, but all of these paths are
d-separated by M .

Thus, V = {M} and W = {}.
(c) Identifying E[Y a1,a2 ] requires the following positivity assumptions:

∀m such that Pr(M = m) > 0, P r(A1 = a1|M = m) > 0 (P1)
∀m such that Pr(M = m,A1 = a1) > 0, P r(Aa1

2 = a2|M = m,A1 = a1) > 0 (P2)

(d) E[Y a1,a2 ] could be identified as follows:

E[Y a1,a2 ] = Pr(Y a1,a2 = 1) (Y is binary)

=
∑
m

Pr(Y a1,a2 = 1|M = m)Pr(M = m) (Law of total probability)

=
∑
m

Pr(Y a1,a2 = 1|M = m,A1 = a1)Pr(M = m) (P1 and E1)

=
∑
m

Pr(Y a1,a2 = 1|M = m,A1 = a1, A
a1
2 = a2)Pr(M = m) (P2 and E2)

=
∑
m

Pr(Y = 1|M = m,A1 = a1, A2 = a2)Pr(M = m) (Consistency)
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Thus, we proved that:

E[Y a1,a2 ] =
∑
m

E[Y |M = m,A1 = a1, A2 = a2]Pr(M = m)

(2) Stochastic strategies
(a) The desired d-SWIG is shown below :

L1

A1 a1

Lgπ
2

Agπ
2 Agπ+

2 Y gπ

X2

M

UL

G∈(gπ)

where, with a slight abuse of notations, we directly replaced Agπ+
1 by a1.

(b) From the d-SWIG, and using the rules of d-separation, we can read:
• (E′

1) : Y
gπ ⊥⊥ A1|M ,UL. This set is minimal because :

(i) M is required to block the path A1 ←M → Y gπ .
(ii) UL is required to block the path A1 ← UL → Lgπ

2 → Agπ+
2 → Y gπ .

• (E′
2) : Y

gπ ⊥⊥ Agπ
2 |UL,A1,M ,Lgπ

2

The set is minimal because :
(i) Lgπ

2 is required to block the path Agπ
2 ← Lgπ

2 → Agπ+
2 → Y gπ .

Finally, we have V2 = {M,UL} and W2 = {Lgπ
2 }.

(c) The arrow from UL → L2.
(d) Without the arrow from from UL → Lgπ

2 in the SWIG, the exchangeability
conditions from previous questions become:
• (E′

1) : Y
gπ ⊥⊥ A1|M .

• (E′
2) : Y

gπ ⊥⊥ Agπ
2 |A1,M ,Lgπ

2

Then, we can prove that :

E[Y gπ ] =
∑
m

Pr(Y gπ = 1|M = m)p(m) (LOTP)

=
∑
m

Pr(Y gπ = 1|A1 = a1,M = m)p(m) (E’1 + positivity)

=
∑
m,l2

Pr(Y gπ = 1|l2, A1 = a1,M = m)p(Lgπ
2 = l2|A1 = a1,M = m)p(m) (LOTP)
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=
∑

m,l2,a′2

Pr(Y gπ = 1|Agπ+
2 = a′2, L

gπ
2 = l2, A1 = a1,M = m)pg(l2, a

′
2)p(l2|a1,m)p(m)

(LOTP)

=
∑

m,l2,a′2

Pr(Y gπ = 1|Agπ
2 = a′2, A

gπ+
2 = a′2, L

gπ
2 = l2, A1 = a1,M = m)pg(l2, a

′
2)p(l2|a1,m)p(m)

(E’2)

=
∑

m,l2,a′2

Pr(Y = 1|A2 = a′2, L2 = l2, A1 = a1,M = m)pg(l2, a
′
2)p(L2 = l2|A1 = a1,M = m)p(m)

(consistency)

where

pg(l2, a
′
2) = Pr(Agπ+

2 = a′2|L
gπ
2 = l2, A1 = a1,M = m) = a′2 · π(l2) + (1− a′2) · (1− π(l2)).

Thus:

E[Y gπ ] =
∑

m,l2,a′2

E[Y |A2 = a′2,M = m,A1 = a1, L2 = l2]p
g(l2, a

′
2)p(l2|a1,m)p(m)

where pg(l2, a
′
2) = a′2 · π(l2) + (1− a′2) · (1− π(l2))

(e) In this case ∀ l2 : π(l2) = 1 so that pg(l2, a
′
2) = a′2. Also, the intervened value of

treatment at time point 2 does not rely on the value of Lgπ
2 , so that there is no

green arrow in the SWIG above anymore. This implies that Y gπ ⊥⊥ Lgπ
2 |M,A2 =

1, A1 = 1. Knowing that, the identification formula reduces to :

E[Y gπ ] =
∑
m,l2

Pr[Y = 1|A2 = 1,M = m,A1 = 1, L2 = l2]p(l2|A1 = 1,m)p(m)

(The term with a′2 = 0 is 0)

=
∑
m,l2

Pr[Y gπ = 1|A2 = 1,M = m,A1 = 1, Lgπ
2 = l2]p(l2|A1 = 1,m)p(m)

(consistency)

=
∑
m,l2

Pr[Y gπ = 1|A2 = 1,M = m,A1 = 1]p(l2|A1 = 1,m)p(m)

(Y gπ ⊥⊥ Lgπ
2 |M,A2 = 1, A1 = 1)

=
∑
m

Pr[Y gπ = 1|A2 = 1,M = m,A1 = 1]p(m), (p(l2|A1 = 1,m) sums to 1)

which is the formula we found in question (1)(c) above.

(3) Natural grace period strategies
(a) The desired d-SWIG is shown below :
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L1

A1 Ag+
1

Lg
2

Ag
2 Ag+

2 Y g

M

UL

G3(g)

(b) Because Ag+
2 is a function of previous intervened treatment value Ag+

1 (see slide
179 from the lecture).
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