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Plan for today

More on IPW estimators

Say a few things about variance (so far we have talked quite a lot
about bias).

Variance of estimators
bootstrap

If time: begin introducing an estimator that combines both regression
and IPW.
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Marginal structural models

An alternative way of weighting by the propensity scores is to define a
so-called marginal structural model, which is a statistical model that
parameterizes a functional of a marginal counterfactual Y a (not the joint

counterfactual (Y a=1,Y a=0)).

An example of a marginal structural model is

E(Y a) = ω0 + ω1a.

This model is saturated for a binary A and implies that

E(Y 0) = ω0,

E(Y 1) = ω0 + ω1,

E(Y 1)→ E(Y 0) = ω1.

You can think about this as a regression model that is fitted to a
(pseudo)population where A is randomly assigned.
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Saturated model

This is just a notational remark. I will sometimes use the term ”saturated”
model. A (parametric) model is saturated when the number of parameters
(say, regression coe!cients) is equal to the number of data points.
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Estimator in marginal structural model

The estimator in a marginal structural model will look like

µ̂MSM(a) =
1

n

∑n
i=1

I (Ai=a)Yi
ω(Ai |Li ;ε)

1

n

∑n
i=1

I (Ai=a)
ω(Ai |Li ;ε)

.

I have omitted a proof, but you will show that this estimator is consistent
in your homework.
PS: you can also try to show that, under our identifiability assumptions, µ̂MSM(a) is a
consistent estimator of E(Y a) by using results for weighted least square regressions.
Both µ̂IPW (a) and µ̂MSM(a) are consistent. If Y is binary, only µ̂MSM(a) ensures that the
estimate of E(Y a) is in [0, 1].
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Estimation when the propensity score is known

When ε(a | l) is a known function, the estimator of E(Y a) is

µ̂IPW (a) =
1

n

n∑

i=1

I (Ai = a)Yi

ε(Ai | Li )
.

The propensity score ε(a | l), unlike the function Q(l , a), is known in
randomised experiments (determined by the investigator). However, in
most observational data settings, the propensity score is unknown.
PS: This estimator has been known for a long time and is often called the
Horvitz Thompson estimator in survey sampling.35 It is not a maximum
likelihood estimator of E(Y a), but it is an M-estimator (you will see this
from doing the homework).

35Daniel G Horvitz and Donovan J Thompson. “A generalization of sampling without
replacement from a finite universe”. In: Journal of the American statistical Association

47.260 (1952), pp. 663–685.
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Estimation when the propensity score is unknown

More generally, we can propose a regression model ε(A | L; ϑ) for ε(A | L),
and we can consider the estimator

µ̂IPW (a) =
1

n

n∑

i=1

I (Ai = a)Yi

ε(Ai | Li ; ϑ)
.

For example, suppose that we fit a logistic regression model and find the
MLE ϑ̂ of ϑ, which is the solution to the estimating equation (See slide
201)

n∑

i=1

(
1
Li

)(
Ai →

exp(ϑ1 + ϑT
2
Li )

1 + exp(ϑ1 + ϑT
2
Li )

)
= 0.
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Estimation when the propensity is unknown

Define ϖ = (µ, ϑT )T , and solve the stacked estimating equations

n∑

i=1

(
I (Ai = a)Yi

ε(Ai | Li ; ϑ)
→ µ

)
= 0,

n∑

i=1

(
1
Li

)(
Ai →

exp(ϑ1 + ϑT
2
Li )

1 + exp(ϑ1 + ϑT
2
Li )

)
= 0,

The solution µ̂IPW to this system is an M-estimator, and therefore it is
consistent (under our regularity conditions). We can use M-estimator
theory to argue that the estimator is asymptotically normal.
In the next slide, we will study an interesting special case.
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Example: The IPW estimator and variance

Suppose that we are in the randomised experiment, such that ϑ is known:
let P(A = 1 | L) = 0.5, so A ↑↑ L. Suppose also that we adapt the
correctly specified model ε(1 | l ; ϑ) = ϑ. In particular, the truth is
ϑ0 = 0.5.
Statistician 1 suggests using the true value ϑ0 = 0.5 because it is known.
Statistician 2 suggests using the MLE ε(1 | l ; ϑ̂) = ϑ̂ = 1

n

∑n
i=1

Ai .
Who selected the most e!cient estimator?
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Statistician 1

The estimator for µ1 = E(Y a=1) = E(Y | A = 1) is

µ̂1 =
1

n

n∑

i=1

AiYi

ϑ0
=

n∑

i=1

AiYi

n/2
.

The estimator µ̂1 is consistent because E(YA) = E(AE(Y | A)) = µ1

2
and thus

n
→1

∑n
i=1

AiYi
P→↓ µ1

2
. After some algebra,

↔
n(µ̂1 → µ1) = 2n→1/2

n∑

i=1

(AiYi → µ1/2).

Define ϱ2
1
= var(Y | A = 1),

var(AY ) = E(var(AY | A)) + var(E(AY | A)) (8)

= E(Aϱ2

1) + var(Aµ1) =
ϱ2
1

2
+

µ2
1

4
. (9)

CLT:
↔
n(µ̂1 → µ1)

D→↓ N (0, 2ϱ2
1
+ µ2

1
).
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Statistician 2

The estimator for µ1 = E(Y a=1) = E(Y | A = 1) is

µ̂↑
1 =

1

n

n∑

i=1

AiYi

ϑ̂
=

∑n
i=1

AiYi∑n
i=1

Ai
.

Indeed, µ̂↑
1
is consistent, E(YA) = E(AE(Y | A)) = µ1

2
, so that

n
→1

∑n
i=1

AiYi
P→↓ µ1

2
and n

→1
∑n

i=1
Ai

P→↓ 1

2

After some algebra,

↔
n(µ̂↑

1 → µ1) =
n
→1/2

∑n
i=1

Ai (Yi → µ1)

n→1
∑n

i=1
Ai

var(A(Y → µ1)) = E(Avar(Y → µ1 | A)) + var(AE(Y → µ1 | A)) =
ϱ2
1

2
+ 0

CLT and Slutsky’s theorem :
↔
n(µ̂↑

1
→ µ1)

D→↓ N (0, 2ϱ2
1
).
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Interesting insight from Statistician 1 vs Statistician 2

It is more e!cient to estimate the propensity score, even if the true
propensity is known. (This is a more general result; not just a special
case we have considered here.)

Does this contradict what we know from MLE theory, where including
more known information, leads to lower variance? No, this is not a
contradiction because the IPW estimator is not an MLE for µ1.
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Outcome estimation for predictive purposes

Outcome regression is often used for purely predictive purposes.

Online stores would like to predict which customers are more likely to
purchase their products. The goal is not to determine whether your age, sex,
income, geographic origin, and previous purchases have a causal e”ect on
your current purchase. Rather, the goal is to identify those customers who
are more likely to make a purchase so that specific marketing programs can
be targeted to them. It is all about association, not causation. Similarly,
doctors use algorithms based on outcome regression to identify patients at
high risk of developing a serious disease or dying.

A study found that Facebook Likes predict sexual orientation, political
views, and personality traits (Kosinski et al, 2013). Low intelligence was
predicted by, among other things, a “Harley Davidson” Like. This is purely
predictive, not necessarily causal.

From Hernan and Robins, Causal inference: What if?
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Prediction and procedures for model selection

Model selection is a di”erent endeavour when the aim is prediction.

Investigators who seek to do pure predictions may want to include any
variables that, when used as covariates in the model, improve its predictive
ability.

This motivates the use of selection procedures, such as forward selection,
backward elimination, stepwise selection and new developments in machine
learning.

However, using these procedures for causal inference tasks can be
unnecessary and harmful. Both bias and inflated variance may be the result.

For example, we do not fit a propensity score model to predict the treatment
A as good as possible: we just fit the model to guarantee exchangeability.
Indeed, covariates that strongly associated with treatment, but are not
necessary to guarantee exchangeability, do not reduce bias. Adjustment for
these variables can lead to larger variance...
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Standard error and variance for IPW estimators

We can sometimes obtain variance estimators from M-estimator
theory.

However, I do suggest using the bootstrap for the settings we
consider here (see next slide for a brief introduction to bootstrap).

Computer intensive but convenient.
Simple in practice, but rigorous theory behind the scenes.
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On the variance of M-estimators

Under regularity conditions, the asymptotic properties of an M-estimator ϖ̂ can be
derived from Taylor series approximations, the law of large numbers, and the
central limit theorem. Here is a brief outline.

Let Ṁ(Zi , ϖ) = ςM(Zi , ϖ)/ςϖ
↭ (k ↗ k matrix).

C (ϖ0) = E [→Ṁ(Zi , ϖ0)], and

B(ϖ0) = E [M(Zi , ϖ0)M(Zi , ϖ0)↭].

Then under suitable regularity assumptions, ϖ̂ is consistent and
asymptotically Normal, i.e.,

↔
n(ϖ̂ → ϖ0)

d↓ N(0,#(ϖ0)) as n ↓ ↘,

where #(ϖ0) = C (ϖ0)→1
B(ϖ0){C (ϖ0)→1}↭.

This can be seen by a first-order Taylor series expansion of each row of the
estimating equation

∑n
i=1

M(Zi ; ϖ̂) = 0 in ϖ̂ about ϖ0,

0 =
n∑

i=1

M(Zi ; ϖ0) +
n∑

i=1

[
Ṁ(Zi , ϖ

↑)
]
(ϖ̂ → ϖ0),

where ϖ↑ is a value between ϖ̂ and ϖ0.
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Variance continues

The sandwich form of #(ϖ0) suggests several possible large sample variance
estimators.

For some problems, the analytic form of #(ϖ0) can be derived and
estimators of ϖ0 and other unknowns simply plugged into #(ϖ0).

Alternatively, #(ϖ0) can be consistently estimated by the empirical sandwich
variance estimator, where the expectations in C (ϖ) and B(ϖ) are replaced
with their empirical counterparts.

Let Ci = →Ṁ(Zi , ϖ)|ω=ω̂,Cn = n
→1

∑n
i=1

Ci ,Bi = M(Zi , ϖ̂)M(Zi , ϖ̂)↭, and
Bn = n

→1
∑n

i=1
Bi . The empirical sandwich estimator of the variance of ϖ̂ is

C
→1

n Bn{C→1

n }↭/n.
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Bootstrap

Bootstrap is a method for estimating the variance of a parameter.
Let Un = g(X1, . . . ,Xn) be a statistic, i.e. a function of data (that does not

depend on unknown parameters). For example, µ̂IPW (a) = 1

n

∑n
i=1

I (Ai=a)Yi

ε(Ai |Li ;ϑ̂)
.

We would like to estimate VAR(Un), and the bootstrap is motivated by two
steps:

1 Estimate VAR(Un) by VARP̂n
(Un), where P̂n is the empirical distribution.

2 Approximate VARP̂n
(Un) using simulations.

Step 2 is very useful when it is hard to express the closed form solution to the
variance of Un. Bootstrap variance estimation is done as follows:

1 Draw X
↑
1
, . . . ,X ↑

n ≃ P̂n. (Sample with replacement from (X1, . . . ,Xn))

2 Compute U
↑
n = g(X ↑

1
, . . . ,X ↑

n ).

3 Repeat step 1 and 2 K times to get U↑
n,1,U

↑
n,2, . . . ,U

↑
n,K .

36

4 vboot =
1

K

∑K
k=1

(
U

↑
n,k → 1

K

∑K
l=1

U
↑
n,l

)2

36Usually → 1000 times.
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Bootstrap

Bootstrap is based on two approximations

VAR(Un) ⇐ VARP̂n
(Un) ⇐ vboot.

Bootstrap is very useful in practice and simple to implement;
You just draw X

→
1
, . . . ,X →

n with replacement from (X1, . . . ,Xn).
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Bootstrap confidence intervals

Bootstrap confidence intervals can be created in several ways.

1 The normal intervals: Un ± ωϖ/2ŝeboot ,
↔
vboot = ŝeboot , where ωϖ/2 is the

φ/2 quantile of a standard normal variable. this requires Un to be close to
normal.

2 Percentile intervals: Define the interval Cn = (U↑
ϱ/2,U

↑
1→ϱ/2), where U

↑
ς is

the ↼ sample quantile of (U↑
n,1,U

↑
n,2, . . . ,U

↑
n,K ).

3 Studentised pivot intervals: Often perform better. A pivot is a random
variable whose distribution does not depend on unknowns. You will see in
the homework...

There are also many other ways of estimating bootstrap confidence intervals.
One high-level disclaimer: The bootstrap can, under certain data generating
mechanisms, fail. If we have i.i.d. data an we study functionals that are
reasonably smooth, for example when the limiting distribution of Un is normal
and X1, . . . ,Xn are iid, which we study in the course, the bootstrap will usually
work. We will not consider violations in depth here.
For a detailed theory on the bootstrap, see Anthony Christopher Davison and
David Victor Hinkley. Bootstrap methods and their application. 1. Cambridge university
press, 1997
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Reminder on IPW

Remember that

µ̂IPW (a) =
1

n

n∑

i=1

I (Ai = a)Yi

ε(Ai | Li ; ϑ̂)

is a consistent estimator. Indeed, it is an M-estimator because µ̂IPW (a) is
a solution to the estimating equation,

1

n

n∑

i=1

{ I (Ai = a)Yi

ε(Ai | Li ; ϑ̂)
→ µ̂IPW (a)} = 0,

i.e., the solution to
n∑

i=1

M(Zi , µ̂IPW (a)) = 0.

where Zi = (Li ,Ai ,Yi ) and M(Zi , µ) = { I (Ai=a)Yi
ω(Ai |Li ;ε̂) → µ}, where ϑ̂ is an

estimate of ϑ̂ derived from another M-estimator, e.g. an MLE (thus, we
have a stacked estimating equations).
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Study on weight gain continues

Slightly extended graph

A a C
a

c = 0

L

Y
a,c=0
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Censoring: weight gain study continues

Suppose that there were 63 additional individuals who met our eligibility
criteria but were excluded from the analysis because their weight in 1982
was not known. That is, their outcome was censored.

Excluding the censored individuals will lead to selection bias due to
conditioning on a collider.

Then, the naive estimate is

Ê(Y | A = 1,C = 0)→ Ê(Y | A = 0,C = 0) = 2.5 (95% CI : 1.7, 3.4).

On the other hand, the causal e”ect of interest is

Ê(Y a=1,c=0)→ Ê(Y a=0,c=0).

From the exercises, we derived an identification formula
E [Y a,c=0] =

∑
l E [Y | A = a,C = 0, L = l ]P(L = l), that motivates a

plug-in estimator, see the next slide.
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Estimation using standardisation in the smoking example

We can estimate Ê(Y a,c=0) by a plug-in g-formula estimator, also called a
parametric g-formula estimator, because E(Y a,c=0) = E[E(Y | A = a,C = 0, L)],

1

n

n∑

i=1

Ê(Y | A = a,C = 0, Li ),

where Ê(Y | A = a,C = 0, Li ) is a regression model, like Q(l , a;↽) which is fitted
to those who are uncensored (C = 0).

Suppose that we included a product term between smoking cessation A and
intensity of smoking, but otherwise only main terms. This implies that our
model imposes the restriction that each covariate’s contribution to the mean
is independent of that of the other covariates, except that the contribution
of smoking cessation varies linearly.

If we were interested in the average causal e”ect in a particular subset of the
population, say characterised by V , we could have restricted our calculations
to that subset.
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Censoring: weight gain study continues with IPW

Analogously, we can consider an IPW estimator in the presence of
censoring.

We multiply the original IPW weight with an inverse probability of
censoring weight,

εC (c | a, l) ⇒ P(C = c | A = a, L = l).

The proof that this work is essentially identical to the proof that IPW
weighting works. Just replace ε(a | l) in the original proof with the
product ε(a | l)εC (0 | a, l) = P(A = a,C = 0 | L = l).

Explicitly,

µ̂IPW (a) =
1

n

n∑

i=1

I (Ai = a,Ci = 0)Yi

ε(Ai | Li ; ϑ1)εC (0 | a, Li ; ϑ2)
.

How would you obtain an estimate of εC (0 | a, l)?
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Just a few remarks on logistic regression models

Logistic regression models have coe!cients that are easily transformed
to odds ratios. Thus, odds ratios are often reported in practice.

Rarely a parameter of interest for decision making or causal inference
more broadly (think back to the exercise on collapsibility too).

Mats Stensrud Randomisation and Causation Spring 2025 248 / 422


	Structure of the course
	Motivation
	Prediction vs. causal inference
	Defining a causal effect
	Lecture 2
	Randomisation
	Effect modification and conditional effects
	Interaction is different from effect modification
	Causal inference from observational data
	Target trial

	Lecture 3
	Intuitive motivation for causal graphs
	More formal consideration of graphs
	Causal Model with Respect to a DAG
	Lecture 4
	Single World Intervention Graphs (SWIGs)
	Lecture 5
	Lecture 6
	Dynamic regimes
	Estimation
	Lecture 7
	Propensity score methods
	Lecture 8
	Lecture 9
	More on IPW
	Lecture 10
	Lecture 11
	Unmeasured confounding and instrumental variables
	IV inequalities
	Lecture 12
	Motivation for bounds
	Sensitivity analysis
	Finite sample inference
	Lecture 13
	Design of experiments
	Superpopulation inference
	Bounds and decision making

