
EXERCISES FOR RANDOMIZATION AND CAUSATION (MATH-336)

Exercise Sheet 8

Exercise 1 (IPW and M-estimation). This is the continuation of Exercise 1 of last week
and we will consider the same setup.
(a) Find the asymptotic variance of the IPW estimator of the ATE when the propensity

score is known.
(b) Suppose the propensity score is unknown. Write down the expression for the IPW

estimator, ˆATEIPW,u, of E[Y 1 − Y 0];
(c) Suppose we do not want to posit a parametric model on the propensity score. Find

sufficient conditions for an estimator π̂(L) of π (L) that guarantee ˆATEIPW,u to be a
consistent estimator of E[Y 1 − Y 0].
Hint: use the properties of the IPW estimator when the propensity score is known; use
the triangular inequality.

(d) Can we use the result of point c) to build confidence intervals?

Exercise 2 (Pivot intervals). In this exercise we show that bootstrap pivot confidence inter-
vals are valid. Let θ̂n = g(X1, . . . , Xn), where Xi are i.i.d. random variables, be an estimator
for a true parameter θ and let (θ̂∗n,1, . . . , θ̂

∗
n,B) be bootstrap replications of θ̂n, where B →∞.

We denote Rn = θ̂n − θ the pivot. The cumulative distribution function (CDF) of Rn is

H(r) = P(Rn ≤ r).

Consider the interval C∗n(c1, c2) where

c1 = θ̂n −H−1
(

1− α

2

)
, and c2 = θ̂n −H−1

(α
2

)
,

for α ∈ (0, 1).
(a) Show that P(c1 ≤ θ ≤ c2) = 1− α.
(b) Can we conclude that C∗n is an exact 1− α confidence interval for θ?
(c) A fellow student says that the result is interesting, but it’s not directly useful because

we don’t know the function H(r). Suggest a bootstrap estimator Ĥ(r) of H(r).
(d) Use the bootstrap estimator to argue that Cn = (ĉ1, ĉ2) is an approximate 1−α confidence

interval of θ, where

ĉ1 = 2θ̂n − θ̂∗1−α/2,

ĉ2 = 2θ̂n − θ̂∗α/2,

and θ̂∗α is the α sample quantile of (θ̂∗n,1, . . . , θ̂
∗
n,B).

(e) Explain how to find Bootstrap pivot confidence interval for the parameter of the logistic
model for the effect of pesticide in the previous exercises sheet.
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Exercise 3 (Sandwich estimator of the variance of logistic model). Consider again the
logistic model in the previous exercise sheet, and assume β0 = 0. In other words, consider
the following logistic model:

E(Zi) = g−1(xiβ), g(µ) = log(
µ

1− µ
),

where Zi are independent binary random variables and xi > 0.
In this exercise we use M-estimation theory to derive sandwich estimator of the variance

for the above logistic model where the M-estimator is the MLE.
(a) Write down the form of M(z, β), and let β̂ be the resulting M-estimator (MLE in this

case).
(b) Use β̂ to derive an empirical estimator Ĉ for C(β) = E[−Ṁ(Zi, β)].
(c) Use β̂ to derive an empirical estimator B̂ for B(β) = E[M(Zi, β)2].
(d) Derive the sandwich estimator of the variance of θ̂ by:

Σ̂ = Ĉ−1B̂Ĉ−1/n.

Exercise 4 (Predicting the propensity scores). (Based on [1], p. 191) Consider a scenario
under which L1 is a common cause of treatment A and outcome Y , whereas L2 only causes
the outcome via the treatment (as illustrated by the SWIG below). This could for example

A a

L2

Y a

L1

describe a situation where A ∈ {0, 1} denotes two possible treatments and L2 ∈ {0, 1}
indicates the hospital at which an individual is treated, where hospital 1 provides treatment
A = 1 more often than hospital A = 0.

Suppose A,L1, L2, Y, Y
a are drawn from the following data-generating mechanism:

L1, L2 ∼ Ber

(
p =

1

2

)
A ∼ Ber

(
p = logit−1(−4 + L1 + 8L2)

)
Y ∼ Ber

(
p = logit−1(−2L1 + 2A)

)
Y a=1 ∼ Ber

(
p = logit−1(−2L1 + 2 · 1)

)
Y a=0 ∼ Ber

(
p = logit−1(−2L1 + 2 · 0)

)
subject to the constraint

Y = Y a=1I(A = 1) + Y a=0I(A = 0) .

(a) Simulate1 A,L1, L2, Y, Y
a=0, Y a=1 for a population of 1 000 individuals using R.

(b) Plot the CDF of the weights WL1 = 1
π(A|L1)

and WL1,L2 = 1
π(A|L1,L2)

.

1The implementation in R proceeds analogously to Exercise 3 of Exercise Sheet 7.
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(c) Because the causal model satisfies exchangeability conditions Y a ⊥⊥ A | L1 and Y a ⊥⊥ A |
L1, L2, we may use either π(A | L1) or π(A | L1, L2) to identify E[Y a] from the observed
data using inverse probability weighting. Compute the mean and variance of µ̂IPW for
π(A | L1) and π(A | L1, L2) by simulating 5 000 instances of the above population,
using logistic models to estimate the propensity scores. Deduce that µ̂IPW has larger
variance when we use L2 to estimate the propensity scores, even though we might get
more accurate predictions by including L2 in the conditioning set.
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