

EXERCISES FOR RANDOMIZATION AND CAUSATION (MATH-336)

EXERCISE SHEET 8

Exercise 1 (IPW and M-estimation). This is the continuation of Exercise 1 of last week and we will consider the same setup.

- (a) Find the asymptotic variance of the IPW estimator of the ATE when the propensity score is known.
- (b) Suppose the propensity score is unknown. Write down the expression for the IPW estimator, $\hat{ATE}_{IPW,u}$, of $E[Y^1 - Y^0]$;
- (c) Suppose we do not want to posit a parametric model on the propensity score. Find sufficient conditions for an estimator $\hat{\pi}(L)$ of $\pi(L)$ that guarantee $\hat{ATE}_{IPW,u}$ to be a consistent estimator of $E[Y^1 - Y^0]$.
Hint: use the properties of the IPW estimator when the propensity score is known; use the triangular inequality.
- (d) Can we use the result of point c) to build confidence intervals?

Exercise 2 (Pivot intervals). In this exercise we show that bootstrap pivot confidence intervals are valid. Let $\hat{\theta}_n = g(X_1, \dots, X_n)$, where X_i are i.i.d. random variables, be an estimator for a true parameter θ and let $(\hat{\theta}_{n,1}^*, \dots, \hat{\theta}_{n,B}^*)$ be bootstrap replications of $\hat{\theta}_n$, where $B \rightarrow \infty$.

We denote $R_n = \hat{\theta}_n - \theta$ the pivot. The cumulative distribution function (CDF) of R_n is

$$H(r) = \mathbb{P}(R_n \leq r).$$

Consider the interval $C_n^*(c_1, c_2)$ where

$$c_1 = \hat{\theta}_n - H^{-1}\left(1 - \frac{\alpha}{2}\right), \text{ and } c_2 = \hat{\theta}_n - H^{-1}\left(\frac{\alpha}{2}\right),$$

for $\alpha \in (0, 1)$.

- (a) Show that $\mathbb{P}(c_1 \leq \theta \leq c_2) = 1 - \alpha$.
- (b) Can we conclude that C_n^* is an exact $1 - \alpha$ confidence interval for θ ?
- (c) A fellow student says that the result is interesting, but it's not directly useful because we don't know the function $H(r)$. Suggest a bootstrap estimator $\hat{H}(r)$ of $H(r)$.
- (d) Use the bootstrap estimator to argue that $C_n = (\hat{c}_1, \hat{c}_2)$ is an approximate $1 - \alpha$ confidence interval of θ , where

$$\begin{aligned}\hat{c}_1 &= 2\hat{\theta}_n - \hat{\theta}_{1-\alpha/2}^*, \\ \hat{c}_2 &= 2\hat{\theta}_n - \hat{\theta}_{\alpha/2}^*,\end{aligned}$$

and $\hat{\theta}_\alpha^*$ is the α sample quantile of $(\hat{\theta}_{n,1}^*, \dots, \hat{\theta}_{n,B}^*)$.

- (e) Explain how to find Bootstrap pivot confidence interval for the parameter of the logistic model for the effect of pesticide in the previous exercises sheet.

Exercise 3 (Sandwich estimator of the variance of logistic model). Consider again the logistic model in the previous exercise sheet, and assume $\beta_0 = 0$. In other words, consider the following logistic model:

$$\mathbb{E}(Z_i) = g^{-1}(x_i\beta), \quad g(\mu) = \log\left(\frac{\mu}{1-\mu}\right),$$

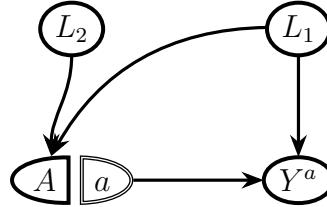
where Z_i are independent binary random variables and $x_i > 0$.

In this exercise we use M-estimation theory to derive sandwich estimator of the variance for the above logistic model where the M-estimator is the MLE.

- (a) Write down the form of $M(z, \beta)$, and let $\hat{\beta}$ be the resulting M-estimator (MLE in this case).
- (b) Use $\hat{\beta}$ to derive an empirical estimator \hat{C} for $C(\beta) = \mathbb{E}[-M(Z_i, \beta)]$.
- (c) Use $\hat{\beta}$ to derive an empirical estimator \hat{B} for $B(\beta) = \mathbb{E}[M(Z_i, \beta)^2]$.
- (d) Derive the sandwich estimator of the variance of $\hat{\beta}$ by:

$$\hat{\Sigma} = \hat{C}^{-1} \hat{B} \hat{C}^{-1} / n.$$

Exercise 4 (Predicting the propensity scores). (Based on [1], p. 191) Consider a scenario under which L_1 is a common cause of treatment A and outcome Y , whereas L_2 only causes the outcome via the treatment (as illustrated by the SWIG below). This could for example



describe a situation where $A \in \{0, 1\}$ denotes two possible treatments and $L_2 \in \{0, 1\}$ indicates the hospital at which an individual is treated, where hospital 1 provides treatment $A = 1$ more often than hospital $A = 0$.

Suppose A, L_1, L_2, Y, Y^a are drawn from the following data-generating mechanism:

$$\begin{aligned} L_1, L_2 &\sim \text{Ber}\left(p = \frac{1}{2}\right) \\ A &\sim \text{Ber}\left(p = \text{logit}^{-1}(-4 + L_1 + 8L_2)\right) \\ Y &\sim \text{Ber}\left(p = \text{logit}^{-1}(-2L_1 + 2A)\right) \\ Y^{a=1} &\sim \text{Ber}\left(p = \text{logit}^{-1}(-2L_1 + 2 \cdot 1)\right) \\ Y^{a=0} &\sim \text{Ber}\left(p = \text{logit}^{-1}(-2L_1 + 2 \cdot 0)\right) \end{aligned}$$

subject to the constraint

$$Y = Y^{a=1} I(A = 1) + Y^{a=0} I(A = 0).$$

- (a) Simulate¹ $A, L_1, L_2, Y, Y^{a=0}, Y^{a=1}$ for a population of 1 000 individuals using R.
- (b) Plot the CDF of the weights $W_{L_1} = \frac{1}{\pi(A|L_1)}$ and $W_{L_1, L_2} = \frac{1}{\pi(A|L_1, L_2)}$.

¹The implementation in R proceeds analogously to Exercise 3 of Exercise Sheet 7.

(c) Because the causal model satisfies exchangeability conditions $Y^a \perp\!\!\!\perp A | L_1$ and $Y^a \perp\!\!\!\perp A | L_1, L_2$, we may use either $\pi(A | L_1)$ or $\pi(A | L_1, L_2)$ to identify $E[Y^a]$ from the observed data using inverse probability weighting. Compute the mean and variance of $\hat{\mu}_{IPW}$ for $\pi(A | L_1)$ and $\pi(A | L_1, L_2)$ by simulating 5 000 instances of the above population, using logistic models to estimate the propensity scores. Deduce that $\hat{\mu}_{IPW}$ has larger variance when we use L_2 to estimate the propensity scores, even though we might get more accurate predictions by including L_2 in the conditioning set.

REFERENCES

[1] Miguel Hernan and James M. Robins. *Causal Inference*. Chapman & Hall, 2018.