EXERCISES FOR RANDOMIZATION AND CAUSATION (MATH-336)

EXERCISE SHEET 8

Exercise 1 (IPW and M-estimation). This is the continuation of Exercise 1 of last week
and we will consider the same setup.

(a) Find the asymptotic variance of the IPW estimator of the ATE when the propensity
score is known.

(b) Suppose the propensity score is unknown. Write down the expression for the IPW
estimator, ATEpw ., of E[Y! — Y"];

(c) Suppose we do not want to posit a parametric model on the propensity score. Find
sufficient conditions for an estimator #(L) of 7 (L) that guarantee ATEpw, to be a
consistent estimator of E[Y — Y]

Hint: use the properties of the IPW estimator when the propensity score is known; use
the triangular inequality.

(d) Can we use the result of point ¢) to build confidence intervals?

Exercise 2 (Pivot intervals). In this exercise we show that bootstrap pivot confidence inter-
vals are valid. Let 6,, = g(X,...,X,), where X, are i.i.d. random variables, be an estimator

for a true parameter 6 and let (Aml, e ,é;j,B) be bootstrap replications of én, where B — o0.
We denote R, = 6, — 0 the pivot. The cumulative distribution function (CDF) of R, is

H(r) =P(R, <r).

Consider the interval C(cq, c2) where

clzén—H_l <1—g>, andczzén—H_l <g>,
2 2

for a € (0,1).

(a) Show that P(¢c; <0< ¢)=1—a.

(b) Can we conclude that C? is an exact 1 — « confidence interval for 67

(c) A fellow student says that the result is interesting, but it’s not directly useful because
we don’t know the function H(r). Suggest a bootstrap estimator H(r) of H(r).

(d) Use the bootstrap estimator to argue that C,, = (¢1, ¢2) is an approximate 1 —a confidence
interval of 6, where

61 - 2077, — :Tfa/27
62 = 29n - 2/27
and 0% is the a sample quantile of (é;,l, ce AZ,B).

(e) Explain how to find Bootstrap pivot confidence interval for the parameter of the logistic

model for the effect of pesticide in the previous exercises sheet.
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Exercise 3 (Sandwich estimator of the variance of logistic model). Consider again the
logistic model in the previous exercise sheet, and assume [y = 0. In other words, consider
the following logistic model:

E(Z) =g '(z:8), 9(n) =log(5

where Z; are independent binary random variables and x; > 0.
In this exercise we use M-estimation theory to derive sandwich estimator of the variance
for the above logistic model where the M-estimator is the MLE.

(a) Write down the form of M(z, (), and let 3 be the resulting M-estimator (MLE in this
case).

(b) Use /3 to derive an empirical estimator C' for C(8) = E[—M (Z;, B)).

(c) Use f3 to derive an empirical estimator B for B(8) = E[M(Z;, 3)?].

(d) Derive the sandwich estimator of the variance of 6 by:

S = O BC .
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Exercise 4 (Predicting the propensity scores). (Based on [I], p. 191) Consider a scenario
under which L; is a common cause of treatment A and outcome Y, whereas Ly only causes
the outcome via the treatment (as illustrated by the SWIG below). This could for example

describe a situation where A € {0,1} denotes two possible treatments and L, € {0,1}
indicates the hospital at which an individual is treated, where hospital 1 provides treatment

A =1 more often than hospital A = 0.
Suppose A, L, Lo, Y, Y® are drawn from the following data-generating mechanism:

1
Ly, Ly ~ Ber (p = 5)

A~ Ber (p =logit™' (=4 + L + 8L,))

Y ~ Ber (p = logit™'(—2L; + 24))
Y*=' ~ Ber (p = logit ' (=2L; +2- 1))

=0 ~ Ber (p = logit ™' (—2L; +2-0))

subject to the constraint
Y=Y [(A=1)+Y*I(A=0).

(a) SimulateE] A, Ly, Ly, Y, Y%= Ya=! for a population of 1 000 individuals using R.

(b) Plot the CDF of the weights W, = and W, ., =

1
(A\L m(A|L1,L2)"

IThe implementation in R proceeds analogously to Exercise 3 of Exercise Sheet 7.
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(c) Because the causal model satisfies exchangeability conditions Y* I A | L; and Y* 1L A |
Ly, Ly, we may use either m(A | L) or w(A | Ly, Lo) to identify E[Y?] from the observed
data using inverse probability weighting. Compute the mean and variance of fi;py, for
m(A | Ly) and w(A | Ly, Le) by simulating 5 000 instances of the above population,
using logistic models to estimate the propensity scores. Deduce that fi;py has larger
variance when we use Lo to estimate the propensity scores, even though we might get
more accurate predictions by including Ls in the conditioning set.
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