EXERCISES FOR RANDOMIZATION AND CAUSATION (MATH-336)

EXERCISE SHEET 7

Exercise 1 (IPW and M-estimation). In this exercise we will study the asymptotic properties
of the IPW estimator. Consider a sample S = {(A1, L1,Y1), ..., (An, L,, Y,)} of iid replicates
of (A,L,Y) such that Y* I A| L but Y* ¥ A, with A € {0,1} and L and Y discrete (with
finite support). Hereafter we will assume the propensity score 7 (a | ) = P(A =a|L =1) is
known. We also assume consistency and positivity.

(a) Write down the expression for the IPW estimator of the ATE of A on Y,
ATEpw = fupw(1) — fupw/(0).
(b) Prove that ATEpw is a consistent estimator of E Y1 —Y9 ie.,
ATEpw 5 E[Y' — Y.

(c) Define the ATEpw estimator as an M-estimator.

(d) Prove that ATEpw is a consistent estimator of E (Y1 — V9] without using the same
arguments as in point b).

(e) Suppose now the propensity score is unknown and that

7 (1) :=m(1]1) = expit(yp + I71) for some v = (79,71) € ' C R*.

(i) write down the expression for the IPW estimator of the ATE of A on Y;

(ii) prove that ATEpy is a consistent estimator of E[Y'—Y?°] when we posit a correctly
specified model for the propensity score and we estimate g via maximum-likelihood
estimation. Can you still use the same arguments as in point b)? Is such an IPW
estimator a maximum-likelihood estimator?

Exercise 2 (A comparison of variance). (From [1], Homework 2)
Suppose that the outcome and propensity model are known. Consider two estimators for

.1 n a=1 1 n A Ye=1 |
the average response: > " V" and = ) i |

i=1 m(Ai[ L)

(a) By assuming conditional exchangeability Y;* L A; | L;, show that the first has lower
variance than the second (that is, we pay some penalty for not observing all subjects in
the data set being treated).

Hint: Show that the second estimator can be written as the first plus something else,
and then demonstrate that the two terms are uncorrelated.

(b) Compute the difference in variance between the estimators in (a) if A is randomized with

probability P(A=1) =1 (ie. 7 =1)

Exercise 3 (Stabilized IPW estimators). (Technical Points 12.1 and 12.2 in [2]) Let A, L, Y
denote treatment, baseline covariates and outcome respectively and suppose the usual as-
sumptions of conditional exchangeability, positivity and consistency hold.

IThe first estimator is an estimator that is typically impossible to compute because all the counterfactuals
are not observed. However, in this exercise we have assumed that Y,=! is observed.
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(a) Show that we can identify F[Y*] from

I(A=a)Y
E [ m(A|L) }

I ]

w(A|L)

This form of the identification formula motives a modified version of the IPW estimator
called the Hajek estimator (or stabilized IPW estimator):

1Ny I(Ai=a)Y;
n Zi:l m(As|Liy)

1 n [(Ai:a) '
n Zi:l 7r(Ai|Li;'y)

(1) flstrpw(a) =

(b) Show that

I(A=a)Yg(A)
E[ ~(AIL) ]

I(A=a)g(A)
E[ T(AIL) ]

E[Y] =

and that

n g(A;
B i it (A= )Y,

n g(A;
%22:1 ﬂ(flglLi);'y) 1(4i =)

HsTipw = )

where g(A) is a function of A, and is consistently estimated by g(A). We refer to %

as stabilized weights because they are, in settings where rely on parametric assumptions,
often smaller than the regular IPW weights %, and can thus give rise to estimators with
a smaller variance.

Exercise 4 (Exploring the IPW estimator). (Based on Lab 4 of [3])

In this exercise we will implement the IPW and Hajek estimators numerically in R in order
to explore their efficiency in cases with near violations of positivity. Consider treatment A
and outcome Y with baseline covariates Wi, W5 in the dataset stabilized_weights.csv,
and suppose these satisfy the causal model below: The data was generated by drawing

W) ——— W,

A Y

n = 5000 i.i.d. samples from the distributions

1
Wy ~ Ber (p: 5)

W, ~ Multinom (1;(0.125,0.375,0.375,0.125))
A~ Ber (p = logit™'(—=1.3 — 3W; + 3W5))
Y ~ Ber (p = logit™' (=2 — 2W; + 3W, + 3A + 2AW3))
Y= ~ Ber (p =logit ' (=2 — 2W; + 3W, +3-1+2-1-Wy))
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V=" ~ Ber (p =logit™ (=2 — 2W; + 3Wa +3-0+2-0- Wa)),
subject to the constraint
Y=Y ' [(A=1)+Y*I(A=0).

The true effect is given by E[Y*=' —Y*=] ~ 0.26 (computed by evaluating - S (Y=Y
in a larger realization of the data with n’ = 100000) .
(a) Import the dataset stabilized_weights.csv into R and use the glm command to per-

form the following logistic regression for the treatment mechanism m(A | L):

logit w(A | L;y) =70 + Wi +7W2 .
Plot the empirical cumulative distribution function of the IPW weights m and
use the weights to evaluate the IPW estimator

n

1 ]AlzaYi
3 ( )

mrpw = ﬁ pa W(A@' | Wl,i,Wz,z‘W) .

(b) Compute fi;py with truncated weights @ +10 - I(m > 10) instead of the weights L
in part (a).

(c) Evaluate the stabilized IPW estimator given by Eq. (1| using the weights as in part (a).

(d) Estimate the variance of the estimators in parts (a)-(d) by drawing R = 5000 different
realizations of a population with n = 5000 i.i.d. individuals from the data generating
mechanism outlined above.

Exercise 5. (Logistic regression model) We would like to estimate the effects of a pesticide
on the statue of stink bugs in a farm. We observe the statue of n stink bugs, and let Z; be the
binary outcome of the experiment for the stink bug 7. Y is the sum of Z; and corresponds to
the number of stink bugs that are observed to be alive after the termination of experiment.

(a) What distribution is reasonable to assume for Y if each stink bug is given the same
dosage of pesticide? What assumption does that require making on the Z;7

(b) Now assume stink bug ¢ is given a specific dosage of pesticide, namely x; > 0. Using
logistic model, state the probability that a bug survives in terms of the constant 5, and
linear coefficient (.

(c) Describe how to fit the parameters of the linear model given data Z;.

(d) Recall from the statistics course that for large sample size n, the variance of the MLE
estimator is given by the inverse of the Fisher information (In other words, the variance
achieves Cramer-Rao bound asymptotically). Assume §y = 0 and calculate the Fisher
information and find an asymptotic estimate for the variance of Bl.

(e) What assumptions were required to write down the likelihood function?
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