
EXERCISES FOR RANDOMIZATION AND CAUSATION (MATH-336)

Exercise Sheet 2

Exercise 1 (Conditional independence. Inspired by Jamie Robins’ lectures). Prove the
following identities for independence, assuming that X, Y, Z,W are discrete:
(a) Symmetry: X ⊥⊥ Y | Z ⇐⇒ Y ⊥⊥ X | Z .
(b) Decomposition: X ⊥⊥ Y,W | Z =⇒ X ⊥⊥ Y | Z .
(c) Weak Union: X ⊥⊥ Y,W | Z =⇒ X ⊥⊥ Y | Z,W .
(d) Contraction: (X ⊥⊥ W | Y, Z) and (X ⊥⊥ Y | Z) =⇒ (X ⊥⊥ Y,W | Z) .

Exercise 2 (Crossover experiments. Based on Fine Point 2.1 and Fine Point 3.2 [1]). In
crossover experiments, individuals are observed during two or more periods. For simplicity,
consider two periods, t = 0 and t = 1. An individual receives a different treatment At in each
period t. Let Y a0,a1

1 be the deterministic counterfactual outcome1 at t = 1 if the individual
is treated with A0 = a0 at t = 0 and A1 = a1 at t = 1. Let Y a0

0 be defined similarly for t = 0.
The individual causal effect Y at=1

t − Y at=0
t can be identified if the following three conditions

hold:
i) no carryover effect of treatment: Y a0,a1

t=1 = Y a1
t=1 for all a0 ∈ {0, 1},

ii) the individual causal effect is constant in time: Y at=1
t −Y at=0

t = α for all t ∈ {0, 1}, and
iii) the counterfactual outcome under no treatment does not depend on time: Y at=0

t = β
for all t ∈ {0, 1}.

Here, α and β are random variables that may differ between individuals.
Answer the following:

(a) Do any of the conditions i)-iii) hold by design in a randomized trial?
(b) For each of the conditions i)-iii), suggest a situation where the condition fails.
(c) Suppose individuals in the study are assigned to one of two crossover treatment regimes:

(A0, A1) = (0, 1) or (1, 0). By assuming conditions i)-iii), show that the identification
formula for the individual causal effect Y at=1

t −Y at=0
t at all t ∈ {0, 1} in terms of observed

outcomes Yt is

α = (Y1 − Y0)A1 + (Y0 − Y1)A0 .

(d) Suppose that i)-ii) hold but iii) is violated and that Y a1=0
1 −Y a0=0

0 = R. Show that under
randomization of treatments At, where individuals are randomized to either (A0, A1) =
(0, 1) with probability 1/2 or (A0, A1) = (1, 0) with probability 1/2, the average causal
effect E[Y at=1

t − Y at=0
t ] at all times t ∈ {0, 1} is identified by

E[α] = E[(Y1 − Y0)A1 + (Y0 − Y1)A0] .

1Some authors denote the counterfactuals by Y a0
i , that is, using subscripts i, when discussing individuals

causal effects, to highlight that Y a0
i may differ between individuals. To simplify the notation, we have

omitted the subscript.
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(e) Suppose now that treatments are randomized as in (d), but that only condition i) holds.
Let αt = Y at=1

t − Y at=0
t for t ∈ {0, 1}. Show that the time-average of the average causal

effect is identified by
1

2
(E[α0] + E[α1]) = E [(Y0 − Y1)A0 + (Y1 − Y0)A1] .

Exercise 3 (Collapsibility and odds ratios. Based on Fine Point 4.3 [1, 2, 3]). Consider
a randomized A ∈ {0, 1}, assigned by flipping an unbiased coin, and outcome Y ∈ {0, 1}.
Suppose there exist subgroups (for example women and men) defined by the covariate V ∈
{0, 1} with positivity for A, i.e. satisfying

P (A = a | V = v) > 0 for all a ∈ {0, 1} whenever P (V = v) > 0 .(1)

(a) Does Y a ⊥⊥ A hold? Does Y a ⊥⊥ A | V = v hold for all v = 0, 1?
(b) Using the exchangeability condition Y a ⊥⊥ A, prove that the following causal (counter-

factual) estimand within subgroups, P (Y a = y | V = v), is identified by

P (Y a = y | V = v) = P (Y = y | A = a, V = v) .

(c) By rewriting the marginal relative risk (RR) as a weighted average of the conditional
relative risks (RRv), prove that any probability law P (A = a, V = v, Y = y) satisfying
the positivity conditions

P (Y = 1 | A = 0) > 0

and Eq. 1 also satisfies

RR ∈
[
min
v

(RRv),max
v

(RRv)
]
,

where

RR =
P (Y a=1 = 1)

P (Y a=0 = 1)

and

RRv =
P (Y a=1 = 1 | V = v)

P (Y a=0 = 1 | V = v)
.

In other words, the marginal risk ratio lies in the range of the conditional relative risk
ratios.

(d) Show also that the marginal risk difference RD = P (Y a=1 = 1) − P (Y a=0 = 1) lies in
the range of the conditional risk differences

RDv = P (Y a=1 = 1 | V = v)− P (Y a=0 | V = v)

under the positivity condition in Eq. 1.
(e)* Find an example of a law P (A = a, Y = y, V = v) such that

ORv=1 = ORv=0 > OR,

where

ORv =
P (Y a=1 = 1 | V = v)

P (Y a=1 = 0 | V = v)

/
P (Y a=0 = 1 | V = v)

P (Y a=0 = 0 | V = v)
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and

OR =
P (Y a=1 = 1)

P (Y a=1 = 0)

/
P (Y a=0 = 1)

P (Y a=0 = 0)
.

Present your answer in the form of a table with entries A × Y × V . Deduce that in
general we cannot write OR as a weighted sum of ORv with non-negative weights.

This property is referred to as the non-collapsibility of the odds ratio, and can be
seen as a consequence of Jensen’s inequality (an average over a non-linear function does
not equal the function evaluated on the average). Thus, reporting odds ratios as effect
measures arguably has undesirable features.

Exercise 4 (Positivity for standardization and IPW. Based on Technical Point 3.1 [1]).
Consider a binary treatment A, a discrete baseline covariates L and an outcome Y . In the
derivation of the weighted identification formula in the lectures, we showed that causal effect
could expressed as the contrast

E[Y a=1 − Y a=0] = E

[
I(A = 1)

π[A | L]
Y

]
− E

[
I(A = 0)

π[A | L]
Y

]
(2)

under the assumption of conditional exchangeability, consistency. and positivity. The posi-
tivity condition is

P (A = a | L = l) > 0 for all a ∈ {0, 1} whenever P (L = l) > 0 .

Next, we will consider what happens when positivity is violated. Suppose that there exists
some a∗, l such that P (A = a∗ | L = l) = 0 and P (L = l) > 0. Next, define Q(a) = {l :
P (A = a | L = l) > 0} to be the levels of L with positivity for treatment level a.
(a) Show that

E

[
I(A = a)Y

π[A | L]

]
= P (L ∈ Q(a))

∑
l∈Q(a)

E[Y | A = a, L = l]P (L = l | L ∈ Q(a)) .

(b) Explain why the naive contrast E
[
I(A=1)
π[A|L] Y

]
−E

[
I(A=0)
π[A|L] Y

]
no longer has a causal inter-

pretation under violation of positivity.
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