EXERCISES FOR RANDOMIZATION AND CAUSATION (MATH-336)

EXERCISE SHEET 2

Exercise 1 (Conditional independence. Inspired by Jamie Robins’ lectures). Prove the
following identities for independence, assuming that X, Y, Z, W are discrete:

(a) Symmetry: X LY |Z<«<—Y L X |Z.

(b) Decomposition: X LYW |Z =X LY |Z.

(¢) Weak Union: X LY,W |Z= X LY |Z,W .

(d) Contraction: (X L W |Y,Z)and (X LY |Z) = (X LY, W|Z2).

Exercise 2 (Crossover experiments. Based on Fine Point 2.1 and Fine Point 3.2 [1]). In
crossover experiments, individuals are observed during two or more periods. For simplicity,
consider two periods, t = 0 and £ = 1. An individual receives a different treatment A; in each
period t. Let Y{""" be the deterministic counterfactual outcorneﬂ at t = 1 if the individual
is treated with Ay = ap at t = 0 and A; = a; at t = 1. Let Y™ be defined similarly for ¢t = 0.
The individual causal effect ;=" — Y%= can be identified if the following three conditions
hold:

i) no carryover effect of treatment: ;2" = Y2 for all ay € {0, 1},
ii) the individual causal effect is constant in time: Y;*=' —Y,*=° = o for all t € {0, 1}, and
iii) the counterfactual outcome under no treatment does not depend on time: Y;*=" = 3
for all t € {0,1}.

Here, o and (8 are random variables that may differ between individuals.
Answer the following:

(a) Do any of the conditions i)-iii) hold by design in a randomized trial?

(b) For each of the conditions i)-iii), suggest a situation where the condition fails.

(c) Suppose individuals in the study are assigned to one of two crossover treatment regimes:
(Ag, A1) = (0,1) or (1,0). By assuming conditions i)-iii), show that the identification
formula for the individual causal effect Y,*=' —Y,*=" at all t € {0, 1} in terms of observed
outcomes Y; is

a= Y1 —Y)A + (Yo —Y1)Ao .

(d) Suppose that i)-ii) hold but iii) is violated and that Y;*=° — Y= = R. Show that under
randomization of treatments A;, where individuals are randomized to either (Ag, A;) =
(0,1) with probability 1/2 or (Ao, A1) = (1,0) with probability 1/2, the average causal
effect E[Y,*=' —Y;*="] at all times ¢ € {0,1} is identified by

Ela] = E[(Y; — Yo)A; + (Yo — Y1) Ay .

ISome authors denote the counterfactuals by Y, that is, using subscripts ¢, when discussing individuals
causal effects, to highlight that Y;*° may differ between individuals. To simplify the notation, we have
omitted the subscript.
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(e) Suppose now that treatments are randomized as in (d), but that only condition i) holds.
Let oy = Y*=! — Y *=° for t € {0,1}. Show that the time-average of the average causal
effect is identified by

5 (Blao] + Elon]) = B[(Y — Vi) o + (¥i — Yo)Ai]

Exercise 3 (Collapsibility and odds ratios. Based on Fine Point 4.3 [1} 2, [3]). Consider
a randomized A € {0, 1}, assigned by flipping an unbiased coin, and outcome Y € {0,1}.
Suppose there exist subgroups (for example women and men) defined by the covariate V €
{0,1} with positivity for A, i.e. satisfying

(1) P(A=a|V =wv)>0forall a € {0,1} whenever P(V =v) >0 .

(a) Does Y* L A hold? Does Y* 1L A |V = v hold for all v =0, 17

(b) Using the exchangeability condition Y* I A, prove that the following causal (counter-
factual) estimand within subgroups, P(Y* =y | V = v), is identified by

PY'=y|V=v)=PY=y|A=4a,V =0).

(c¢) By rewriting the marginal relative risk (RR) as a weighted average of the conditional
relative risks (RR,), prove that any probability law P(A = a,V = v,Y = y) satisfying
the positivity conditions

P(Y=1]A=0)>0
and Eq. [T] also satisfies
RR € |min(RR,), max(RR,)| ,

where

and

PY™=l=1|V =v)

P(Yo=0=1|V =v)
In other words, the marginal risk ratio lies in the range of the conditional relative risk
ratios.

(d) Show also that the marginal risk difference RD = P(Y*=! = 1) — P(Y*=0 = 1) lies in
the range of the conditional risk differences

RD,=P(Y*"'=1|V =0v)—-PY*" |V =v)

RR, =

under the positivity condition in Eq. [T}
(e)* Find an example of a law P(A =a,Y =¥,V = v) such that

Oszl = ORv:() > OR,
where
OR. — P(Y“lel |V =) P(Y“:°:1 |V =)
Y PYeEl=0|V=0)/ PY®=0=0]|V =0)
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and

OR Py«=t=1) /P(Y*=" =1)

- P(ye=l = 0)/P(Y“:0 =0)

Present your answer in the form of a table with entries A x Y x V. Deduce that in

general we cannot write OR as a weighted sum of OR, with non-negative weights.
This property is referred to as the non-collapsibility of the odds ratio, and can be

seen as a consequence of Jensen’s inequality (an average over a non-linear function does

not equal the function evaluated on the average). Thus, reporting odds ratios as effect

measures arguably has undesirable features.

Exercise 4 (Positivity for standardization and IPW. Based on Technical Point 3.1 [I]).
Consider a binary treatment A, a discrete baseline covariates L and an outcome Y. In the
derivation of the weighted identification formula in the lectures, we showed that causal effect
could expressed as the contrast

_ _ I(A=1) I(A=0)
2 EY*™~ —-Y* =E|—=Y| -F|——2Y
) | = | Sa] - [
under the assumption of conditional exchangeability, consistency. and positivity. The posi-
tivity condition is

P(A=a|L=1)>0forall a € {0,1} whenever P(L=1) >0 .

Next, we will consider what happens when positivity is violated. Suppose that there exists
some a*,l such that P(A =a* | L =1) = 0 and P(L = 1) > 0. Next, define Q(a) = {l :
P(A=a|L=1) >0} to be the levels of L with positivity for treatment level a.
(a) Show that

I(A=a)Y) _ . = _ "
E{WWL]}_P(LGQ())ZEQZ@E[Y;A L=I1P(L=1|LeQ)).

(b) Explain why the naive contrast £ [;([fl‘lI:Ll]) Y] —-F [%Y} no longer has a causal inter-

pretation under violation of positivity.
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